

APROVEITAMENTO DE CO-PRODUTOS E VALORIZAÇÃO DE RESÍDUOS

Paulo André Cremonez

CENÁRIO E PERSPECTIVA

CENÁRIO E PERSPECTIVA

PRODUÇÃO DE BIOCOMBUSTÍVEIS

Foco ambiental e energético

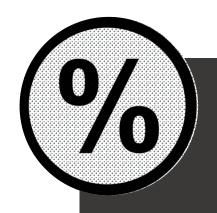
01

TRANSFORMAÇÃO DA BIOMASSA

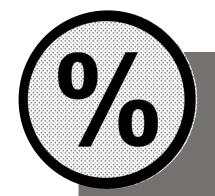
Biomassa convencional é convertida para moderna

02

<u>ÊNFASE</u>


Biodiesel, biogás, bioetanol

03



PERSPECTIVA MUNDO

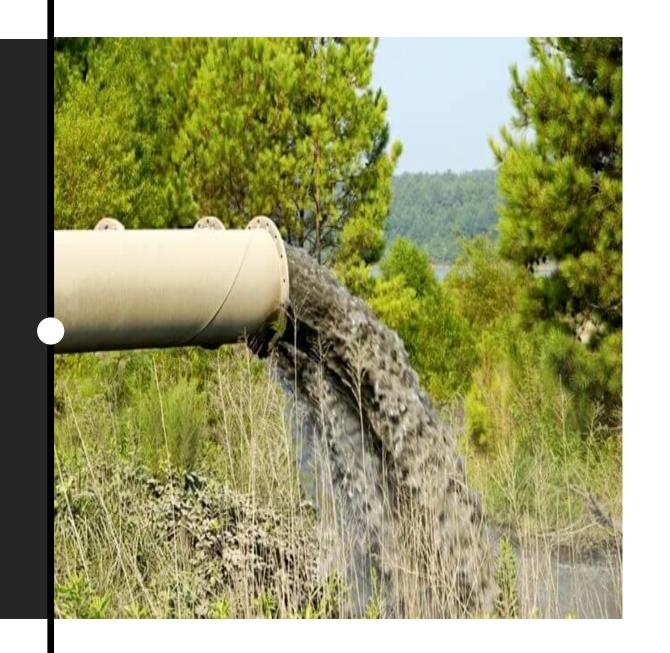
OPEC (Org. dos Países Export. de Petróleo) -> aumento na DEP de **274** para **365** milhões de Barris de Petr. de 2015 para **2040**

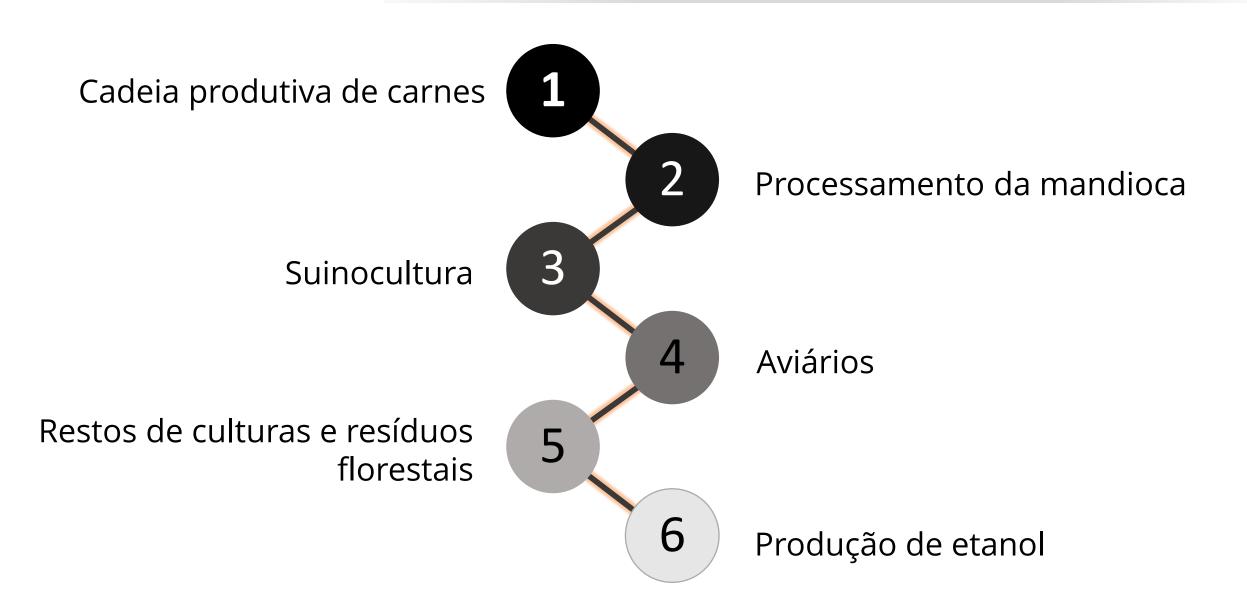
Crescimento médio de **1,2%** ao ano;

Espera-se que energias renováveis cresçam **23%** até **2023**

PERFIS PROFISSIONAIS PARA O **FUTURO** (PARANÁ)

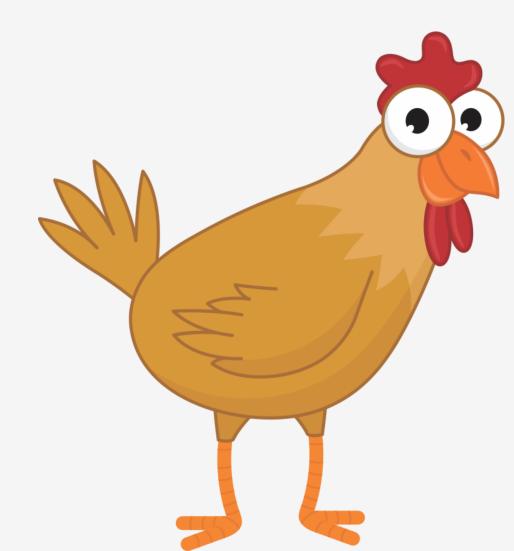
- Biodiesel
- Biodiversidade
- Bioetanol
- Biogás
- Bio-hidrogênio
- Bioinformática
- Biomassa
- Biomateriais
- Biossegurança aplicada à biotecnologia
- Biotecnologia para as indústrias farmacêut Processos regulatórios em biotecnologia


- Biotecnologia para fitossanitários
- Biotecnologia para minimização dos gases de efeito estufa
- Biotecnologia para sanidade animal
- Biotecnologia para tratamento de resíduos
- Escalonamento em biotecnologia
- Genética e melhoramento animal
- Genética e melhoramento vegetal
- Nanobiotecnologia
- Nutrigenômica e farmacogenômica
- Processos enzimáticos

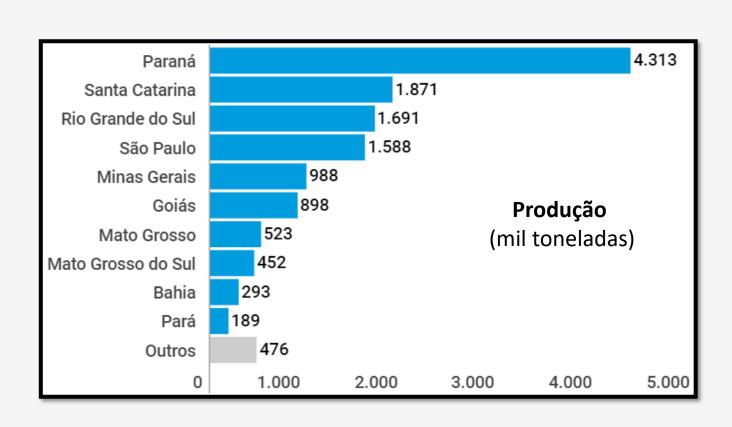

RESÍDUOS

O balanço energético maior **M.P. residuais**

Eliminação de resíduos e agregação de valor a cadeia produtiva


BIOMASSA RESIDUAL

ÓLEO DE FRANGO


- Mercado mundial → 89.9 milhões de toneladas;
- Brasil → Segundo maior produtor de frangos;
- Crescimento de 2,5% em 2020 (Brasil);
- Crescimento previsto (mundo) de 70% até 2050;

Fonte: ABPA (2019); USDA (2019)

ÓLEO DE FRANGO

Paraná → responsável por 31,92% da produção brasileira (2018)

Fonte: Embrapa – Suínos e Aves (2019)

ÓLEO DE FRANGO

- Óleos e gorduras de baixo valor comercial;
- Representam até 70% da DBO do efluente;
- Recuperado → 60-80g de gordura por ave abatida;
- Aproximadamente 474 mil toneladas de óleo residual (ABPA, 2019);

CEBO

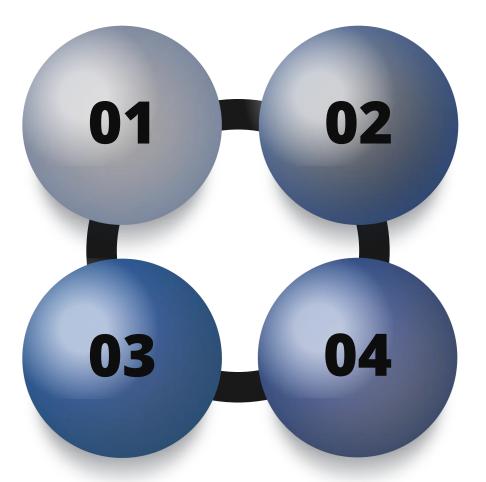
- Plantel (213,5 milhões) e Abatidos (31,9 milhões abatidas) no ano de 2018 (IBGE, 2019);
- 1,2 milhões de toneladas de cebo (2018);
- Segunda matéria-prima mais utilizada na produção de biodiesel;
- Gordura saturada → estabilidade.

Fonte: IBGE (2019); ABRA (2019)

ÓLEOS E GORDURAS DE **FRITURA**

- 8,6 milhões de toneladas de óleo de soja produzidos com 7,8 milhões destinados ao mercado interno;
- 4,1 milhões destinados a produção de biodiesel;
- 1/3 → consumo doméstico (2,86 milhões ton);

Fonte: ABIOVE (2019).


ÓLEOS E GORDURAS DE **FRITURA**

O **uso intenso** de óleos (vegetais ou animais) em processos de fritura também promove **perda de suas características**, tornando-o mais viscoso, de elevada acidez e calor específico, além de apresentar odor desagradável

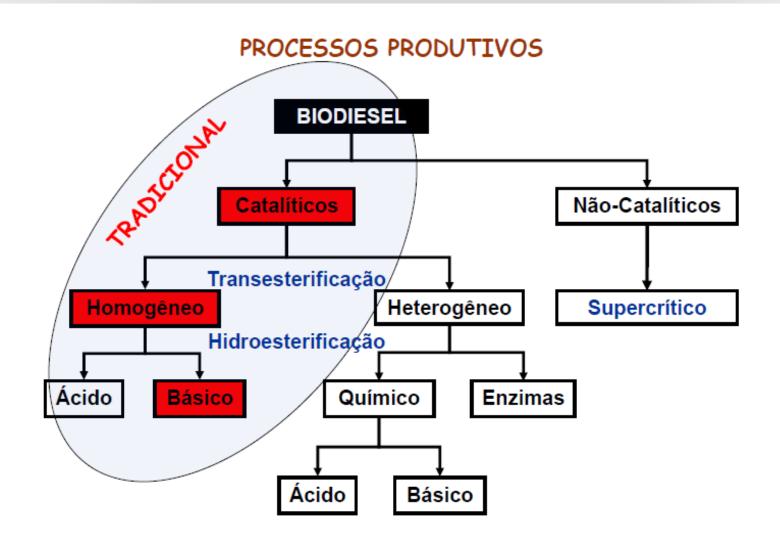
DESCARTE DE ÓLEOS E GORDURAS

Resíduos de elevada carga orgânica;

Apesar de biodegradáveis → grandes impactos;

Impermeabilização do solo;

Eutrofização de corpos hídricos.


"O biodiesel é um combustível renovável obtido a partir de um processo químico denominado transesterificação. Por meio desse processo, os triglicerídeos presentes nos óleos e gordura animal reagem com um álcool primário, metanol ou etanol, gerando dois produtos: o éster e a glicerina"

DEFINIÇÃO

BIODIESEL

ÓLEOS E GORDURAS BIODIESEL

ÓLEOS E GORDURAS BIODIESEL

Figura 1. a) Equação geral para uma reação de transesterificação; b) equação geral da transesterificação de um triacilglicerídeo

Lei 11.907/2005 estabeleceu a introdução do biodiesel no Brasil;

Atualmente utiliza-se o B12 (desde março/20);

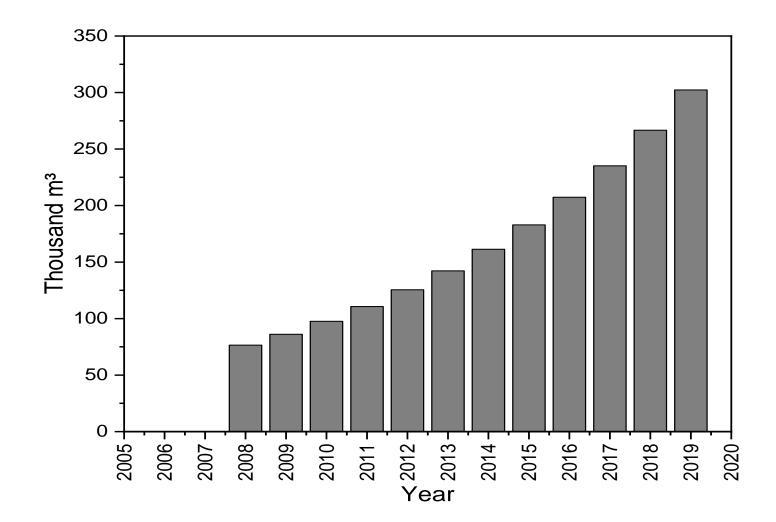
Em 2019 \rightarrow 5,87 milhões de m³ (10,26 % superior ao ano anterior);

ÓLEOS E GORDURAS

BIODIESEL

Biodiesel → Óleo de soja (principal matéria-prima ± 80%) → **70-95%** do custo;

Biodiesel de Segunda geração → óleos e gorduras não comestíveis (residuais → baixo custo);


ÓLEOS E GORDURAS

BIODIESEL

ÓLEOS E GORDURAS BIODIESEL

Perfil na produção de biodiesel de matérias-primas residuais: 2005-2019.

Dados: ANP (2019)

ÓLEOS E GORDURAS BIODIESEL

% (by weight)	Bovino	Frango	Suino	Carneiro	Pato
Lauric Acid (C12:0)	-	-	-	0.2	-
Myristic Ácid (C14:0)	2.72	0.5	1.7	3	
Palmitic Ácid (C16:0)	25.33	24	23.2	27	17
Palmitoleic Ácid (C16:1)	2.02	5.8	2.7	2	-
Stearic Acid (C18:0)	34.7	5.8	10.4	24.1	4
Oleic Ácid (C18:1)	29.87	38.2	42.8	40.7	59.4
Linoleic Ácid (C18:2)	0.75	23.8	19.1	2	19.6
Linolenic Ácid (C18:3)	-	1.9	64.7	-	-

ÁCIDOS SATURADOS OU MONOINSAT. → n. de cetano; calor de combustão; viscosidade; índice de peróxido; auto-oxidação.

Desvantagens:

- Elevado teor de Ácidos Graxos Livres (AGL);
- Composição heterogênea;
- Impurezas no óleo residual;
- Ponto de fusão mais elevado (locais frios);
- Atendimento de parâmetros.

ÓLEOS E GORDURAS

BIODIESEL

Parâmetros para regulamentação do Biodiesel (ANP)

- 22 parâmetros;
- Consulta pública;
- Base em parâmetros europeus.

ÓLEOS E GORDURAS

BIODIESEL

Diesel verde também é conhecido como:

- HRD (Hydroprocessed Renewable Diesel);
- HVO (Hydrotreated Vegetable Oil);
- diesel renovável;
- óleo vegetal hidrogenado.

ÓLEOS E GORDURAS

DIESEL VERDE

Origem biológica (óleos vegetais e gorduras animais);

Apresenta estrutura química baseada em alcanos, que em geral contém entre 12-18 carbonos (faixa de tamanho de cadeia semelhante ao diesel);

1ª geração: óleos comestíveis;

2ª geração: óleos não comestíveis;

3ª geração: óleos e gorduras

residuais;

4ª geração: óleo proveniente de algas.

ÓLEOS E GORDURAS

DIESEL VERDE

Nikolopoulos et al. (2020)

PROCESSO

- Hidrogenação
 materiais graxos (oxigênio é removido das moléculas de triglicerídeo sendo convertidos em água (ARVIDSSON et al. 2011).
- Temperaturas que variam entre 240-360 °C;
- Pressões que podem alcançar até 80 bar.

PROCESSO

- Assim como biodiesel requer um álcool, o diesel verde requer hidrogênio;
- Catalisadores heterogêneos:
 - metais nobres (isentos de enxofre);
 - metais não nobres;
 - nitretos metálicos;
 - etc.

PROCESSO

Decarbonylation:

$$C_nH_{2n+1}COOH + H_2 \rightarrow C_nH_{2n+2} + H_2O + CO$$

Reduction:

$$C_nH_{2n+1}COOH + 3H_2 \rightarrow C_{n+1}H_{2n+4} + 2H_2O$$

- → Maiores proporções de mistura com diesel;
- →Elevado número de cetanos;
- →Boa estabilidade oxidativa;
- →Não contém enxofre;
- → Reduz até 40% emissões de NOx frente ao biodiesel;

VANTAGENS

DIESEL VERDE

DIESEL VERDE X BIODIESEL

Tabela 1. Comparativo de parâmetros sobre a produção de HDR, biodiesel supercrítico (BS) e biodiesel alcalino homogêneo (BAH) para planta de capacidade de 100.000 toneladas ano-1

Parâmetros	HDR	Biodiesel supercrítico	Biodiesel alcalino	
Temperatura (°C)	390	300	60	
Pressão (Mpa)	13,8	20	0,4	
Tempo de Reação	1,1 h	120-400 s	1,8 h	
Conversão média (%)	96	97	95	
Consumo energético	73.608 aut.	63.320	93.040	
(MW/ano)	22.270 ref.	03.320		
Consumo (kW/kg produto)	0,74 aut.	0.62	0,93	
	0,23 ref.	0,63		
Investimento total (em	56.822 aut.	E0 10E	30.071	
milhões de dólares	27.507 ref.	58.185	30.071	

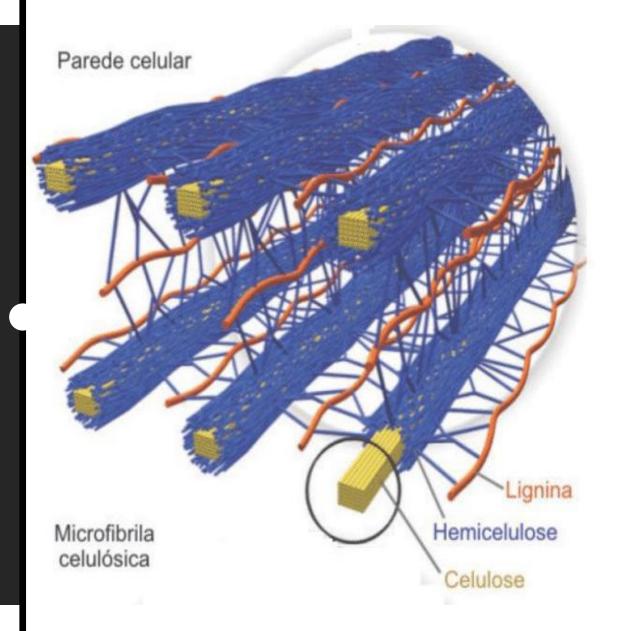
Adaptado de Glisic et al. (2016).

Março de 2020, a ANP abriu consulta pública (Consulta nº3, 2020) com objetivo de obter subsídios e informações → especificação do diesel verde e obrigações quanto a seu controle de qualidade;

Segundo Ubrabio (2020) ->
expectativa a utilização de
misturas entre os três
combustíveis (diesel verde,
biodiesel e diesel mineral).

BRASIL

DIESEL VERDE



RESÍDUOS LIGNOCELULÓSICOS

Lignina: Polímero aromático, tridimensional de elevado peso molecular, inibidor de digestibilidade.

Hemicelulose: Derivam da glicose (monossacarídeos xilose e manose – pentoses e hexoses), alta complexidade; amorfa.

Celulose: Polímero de glicose.

Celulose: Polímero mais rico do planeta;

Fontes:

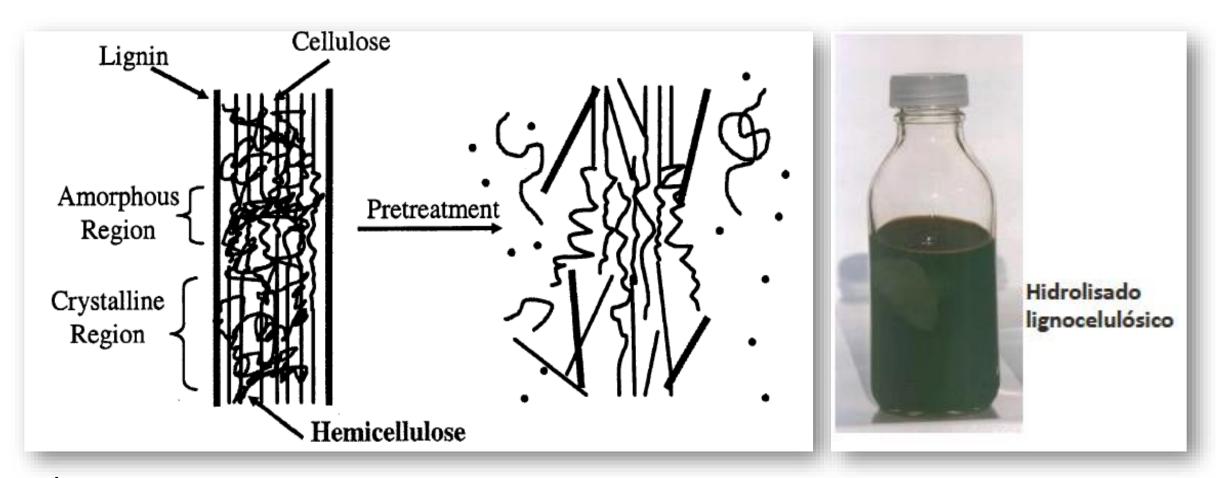
Resíduos florestais (briquetes, lenha, carvão);

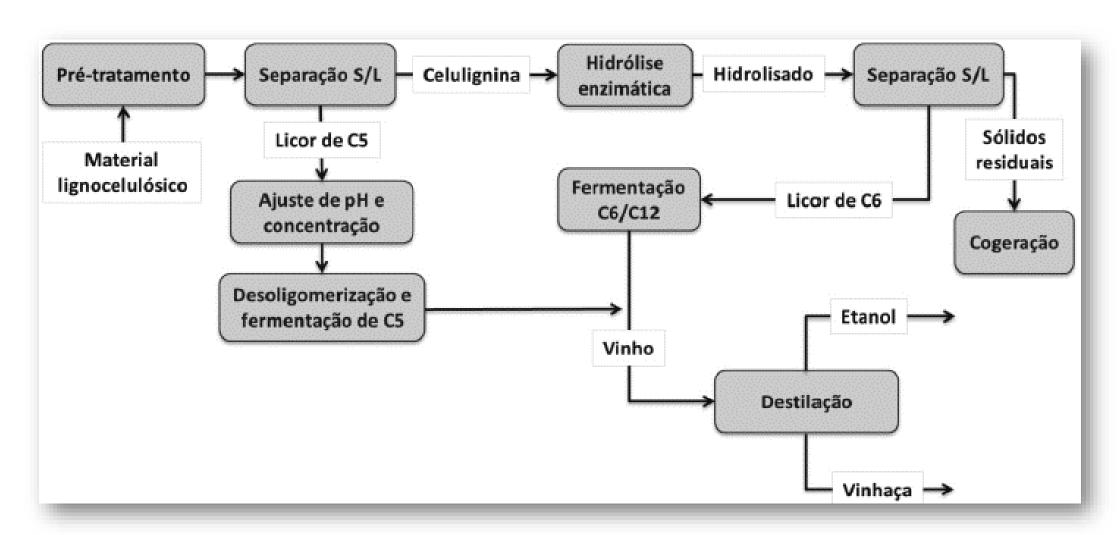
Resíduos de origem agrícola (palha, bagaço, cascas);

Resíduos Lignocelulósicos

Dados - Brasil

- → 43,5 milhões de sacas de café (2015);
- → 2º maior produtor de milho do mundo;
- → Responsável por metade do açúcar comercializado mundialmente.


Resíduos Lignocelulósicos



RESÍDUOS LIGNOCELULÓSICOS

Ácidos; bases; Explosão a vapor; Expansão da fibra em amônia (AFEX); Fermentação Simultâneas (SSF); dentre outros.

ETANOL DE 2ª GERAÇÃO

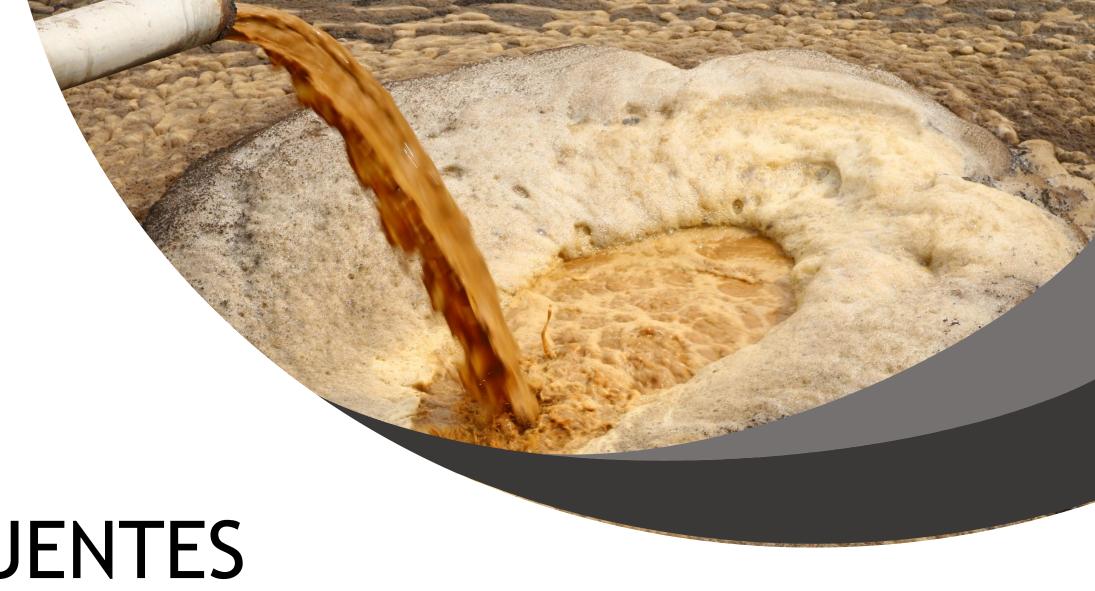
Matéria-prima:

- → Abundante;
- → Baixo custo;
- → Não alimentício.

Resíduos Lignocelulósicos

VANTAGENS DO ETOH 2G

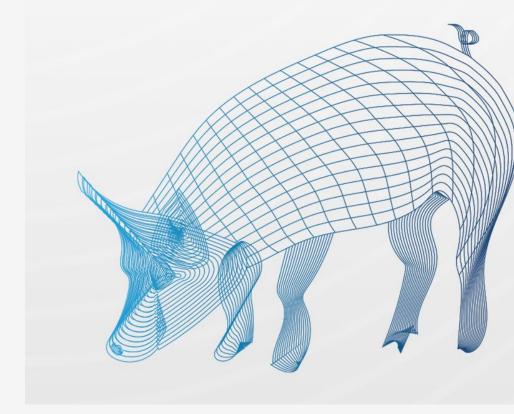
→Elevado custo de enzimas;


→Problemas na separação das pentoses;

→Transporte de resíduos do campo.

Resíduos Lignocelulósicos

DESVANTAGENS DO ETOH 2G



EFLUENTES NÃO GRAXOS

ARS

- 3,97 milhões de toneladas (produção) e 646 mil toneladas (exportação) → 2018;
- Santa Catarina e Paraná que disparam com 26,26% e 21,34%, respectivamente;
- Potencial poluidor **3,5 x** maior que humano;
- 300 milhões de litros de efluentes por dia.

Fonte: Balota et al. (2014).

ARS

- Criação intensiva → potencial poluidor (urina, fezes, água desperdiçada de bebedouros, antibióticos, etc.);
- Fonte interessante de nutrientes balanceados (fertilizante);
- Boa relação C/N;
- pH neutro/alcalino.

PECUÁRIA DE LEITE

Brasil

- →6° maior produtor mundial;
- → Produção de 33,8 bilhões de litros;
- →16,5 milhões de vacas de leite;
- →Região sul → 20,6% da produção nacional → maior produtividade do país.

PECUÁRIA DE LEITE

Cada animal produz aproximadamente até 200 litros de efluente dia (somado água de limpeza) -> manter sanidade;

Alimento muito nutritivo (66% de aproveitamento);

Elevada carga orgânica, rica em nitrogênio, próximos a neutralidade.

CAMA DE AVIÁRIO

- → Região sul → concentração de produção (mais de 50% da produção nacional);
- → Produção de cama (cobertura vegetal, fezes, água, desperdício de ração, etc.);
- → Composição em nutrientes (elevado teor de N);
- → pH básico.

VINHAÇA

- Produção incentivada pelo Pró-alcool;
- Brasil → Maior produtor de cana;
- 625,96 milhões de toneladas;
- **28,16 bilhões** de litros de etanol;
- Paraná → 30 grandes usinas.

VINHAÇA

•	Forte o	Fonte: RAMOS E CECHINEL, 2009	Concent. (mg/L)
•	8 a 15	рН	4,15
	8 a 15 álcool p	DQO	16949,76
•	Até 422	Sólidos Totais	25154,61
		Fósforo Total	60,41
•	Açúcar	Nitrogênio	356,63
	mg/L), e	Nitrogênio Nitrogênio Amoniacal	10,94
		Potássio Total	2034,89

32 I MANSKI EL dI. 2010, PARSAEE EL dI. 2019

MANIPUEIRA

- Brasil → Produção de 21,08 milhões de ton de mandioca (2016);
- Quarto maior produtor mundial;
- Paraná → segundo maior produtor (14,79%)
 → maior processador de fécula;
- 536,6 mil toneladas de fécula (2018);


MANIPUEIRA

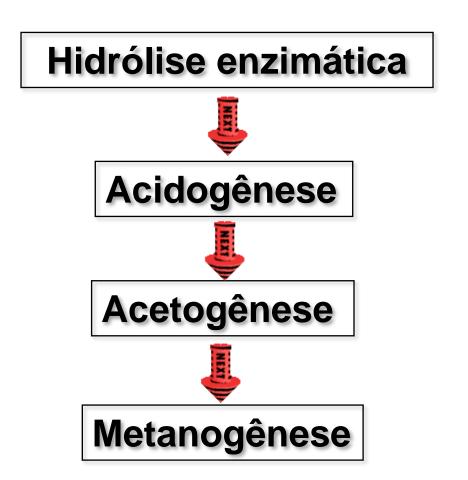
- → Efluente proveniente do processo de fabricação da farinha e fécula, pela prensagem da massa ralada da mandioca;
- → Alta composição em carboidratos e minerais;
- Características: liquido leitoso rico em açucares, derivados cianogênicos e outras substâncias.
- A linamarina é um glicosídeo cianogênico tóxico, precursor do acido cianídrico (Cassoni e Cereda, 2011; GONZAGA et al., 2007).

GLICEROL RESIDUAL

- → Produção de Biodiesel;
- →Reação → Geração de Biodiesel e Glicerol: 10 kg de glicerina para cada 100 kg de biodiesel.
- →Glicerina refinada → diversas aplicações;
- →Glicerina residual → água, NaOH, ác. graxos, etc.

OUTROS RESIDUOS

- Efluente da indústria cervejeira;
- Efluentes de laticínios;
- Plásticos e espumas biodegradáveis;
- Dentre outros.



BIOGÁS

DIGESTÃO ANAERÓBIA

BIODIGESTORES

BIODIGESTOR LAGOA COBERTA

CARACTERÍSTICAS

- Teoria → Sem mistura longitudinal;
- Na prática → Tubular e laminar;
- Lodo, escumas, flotados, etc.

VANTAGENS x DESVANTAGENS

- Instalação e operação simples, robustos, boa eficiência;
- Vazamentos, baixas taxas, baixa carga orgânica volumétrica (0,3-0,5 kgSV/m³ dia), vida útil (5 anos);

BIODIGESTOR INDIANO

Características

- Campânula, selo d'água ou substrato;
- Parede interna;
- Pressão constante;
- Custo.

BIODIGESTOR INDIANO

VANTAGENS x DESVANTAGENS

- Estabilidade de temperatura (abaixo do solo), pequenas áreas, eficiência considerável, vida útil (20 anos);
- Elevado custo da cúpula, possibilidade de entupimentos em encanamentos, não indicado em áreas de lençóis freáticos (infiltração), normalmente pequenas propriedades.

https://www.youtube.com/watch?v=RxDQJ6wzh40

BIODIGESTOR CHINÊS

Utilização

- Programas asiáticos → + de 45 milhões;
- Um dos modelos mais populares do mundo.

Características

- Robusto;
- Construção em alvenaria (sem campânula);
- Cilíndrico, teto abobadado;
- Principio de prensa hidráulica.

BIODIGESTOR CHINÊS

VANTAGENS x DESVANTAGENS

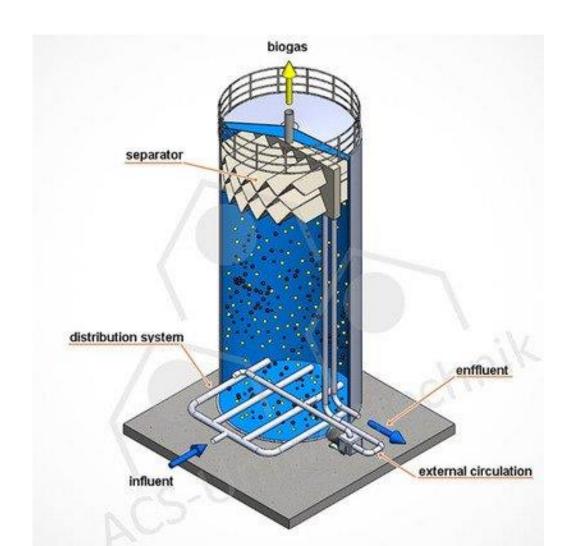
- Estabilidade de temperatura (abaixo do solo);
- pequenas áreas;
- baixas cargas de sólidos;
- baixo custo, simples.
- Vazamentos de gás;
- entupimentos em encanamentos;
- conhecimentos de construção;
- não indicado em áreas de lençóis freáticos (infiltração);
- normalmente pequenas propriedades.

BIODIGESTOR UASB

Utilização

- Reator Anaeróbio de Fluxo Ascendente de Alta Eficiência;
- Desenvolvido na década de 70;

Características


- Fluxo ascendente;
- Leito fluidizado;
- Alta eficiência;
- Baixa carga de sólidos (inferior a 1%).

BIODIGESTOR UASB

VANTAGENS x DESVANTAGENS

- Elevada eficiência (alta produção gás e remoção de matéria orgânica;
- Baixo TRH;
- COV 0,5-8,0 kgSV/m³dia
- Baixa carga de sólidos;
- Elevados tempos de partida;
- Qualidade dos grânulos;

BIODIGESTOR CSTR

Utilização

- Reatores de mistura completa;
- Continuous stirred-tank reactor,
- 90% do total de biodigestores na Europa.

Características

- TRH médio de 15 a 20 dias;
- Elevadas cargas orgânicas;
- Sistema de agitação;
- Não possuem conformação específica.

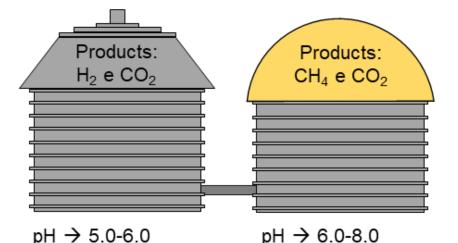
BIODIGESTOR CSTR

Agitação

- Mecânica;
- Hidráulica;
- Pneumática.

VANTAGENS × **DESVANTAGENS**

- Baixo custo operacional;
- Elevado nível de controle
- Elevado contato células x substrato;
- Aplicação em larga escala;
- Elevado custo de projeto e de manutenção.

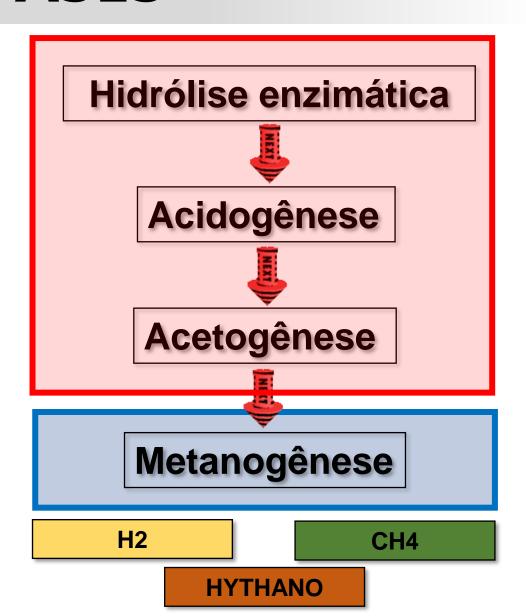

DIVISÃO DE FASES

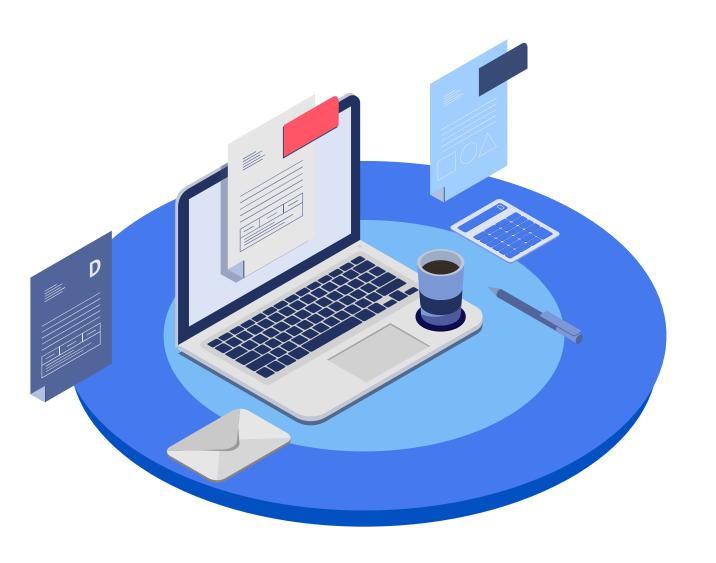
Single-stage

Products: CH₄ e CO₂

pH → 6.5-7.5 HRT → 20-30 days. **AD phases:** hydrolysis, acidogenesis, acetogenesis, methanogenesis.

Two-stage




HRT → 2-4 days.

AD phases:
hydrolysis,
acidogenesis,

acetogenesis.

HRT → 8-10 days. **AD phases:** methanogenesis.

LITERATURA

- Infinidade de **pesquisas**;
- Possibilidade de junção de rotas e combustíveis;
- Conceito de **BIORREFINARIAS**;
- **Diversos outros** processos e Biocombustíveis.

