Programa de Pós-Graduação em Bioenergia

Disciplina: Combustíveis e Biocombustíveis

Aula: Tecnologias de Produção de Biodiesel

Prof. Dr. Helton José Alves

Palotina, 14/05/18

TÓPICOS

1) Conceitos gerais

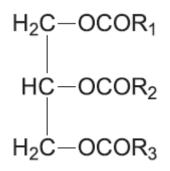
2) Cenário nacional e internacional

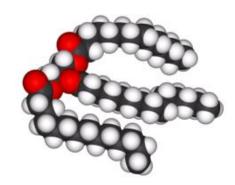
- 3) Matérias primas e insumos
- 4) Métodos de produção

5) Informações complementares

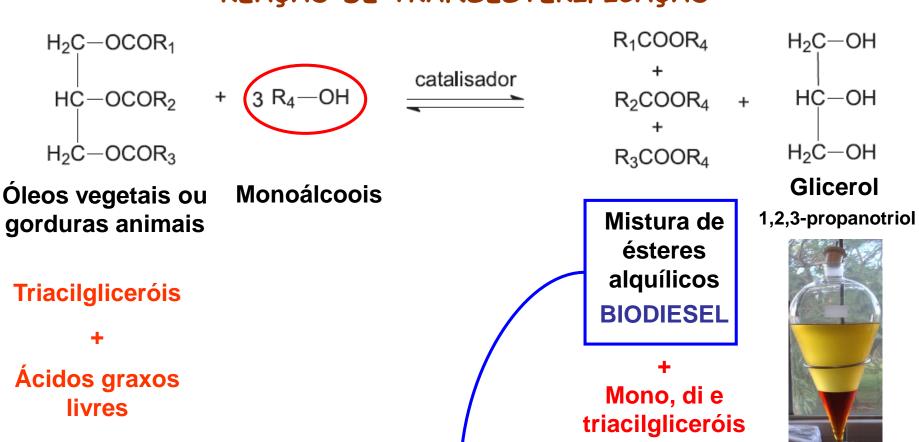
BIODIESEL - CONCEITOS GERAIS

<u>Biodiesel – B100:</u> combustível composto de alquil ésteres de ácidos graxos de cadeia longa, derivados de óleos vegetais ou de gorduras animais.





<u>Óleos vegetais e gordura animal:</u> os maiores componentes são os triacilgliceróis (TAG) / triglicerídeos.



BIODIESEL - VANTAGENS

- 1) Combustível renovável;
- 2) Rendimento equivalente ao diesel;
- 3) Pode misturar-se ao diesel em proporções variadas (B2, B5, B20);
- 4) Reduz a corrosão no motor e aumenta a lubricidade;
- 5) Menor emissão de particulados;

BIODIESEL - INTRODUÇÃO

REAÇÃO DE TRANSESTERIFICAÇÃO

Especificação / ANP: teor mínimo de éster ——— 96,5% (em massa)

residuais

EVOLUÇÃO DA PRODUÇÃO DE BIODIESEL

Lei 11.097/2005: Determina percentuais mínimos de mistura de biodiesel ao diesel e o monitoramento da inserção do novo combustível no mercado.

Inserção na matriz energética brasileira pelo Programa Nacional de Produção e Uso do **Biodiesel (PNPB)**

2005 a 2007

20084 a 2012 2013 em diante

2% autorizativo

2% obrigatório

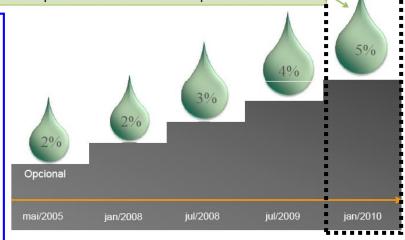
5% obrigatório

Mercado Potencial: 800 milhões de litros/ano

Mercado Firme: 1 bilhão de litros/ano

Mercado Firme: 2,4 bilhões de litros/ano

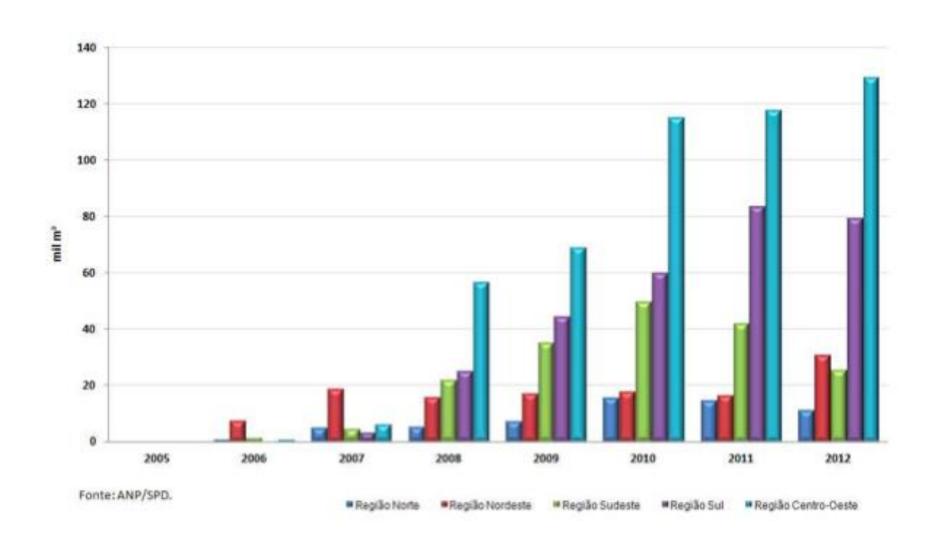
Fonte: Estimativa de mercado de biodiesel elaborada pelo Ministério de Minas e Energia (MME)

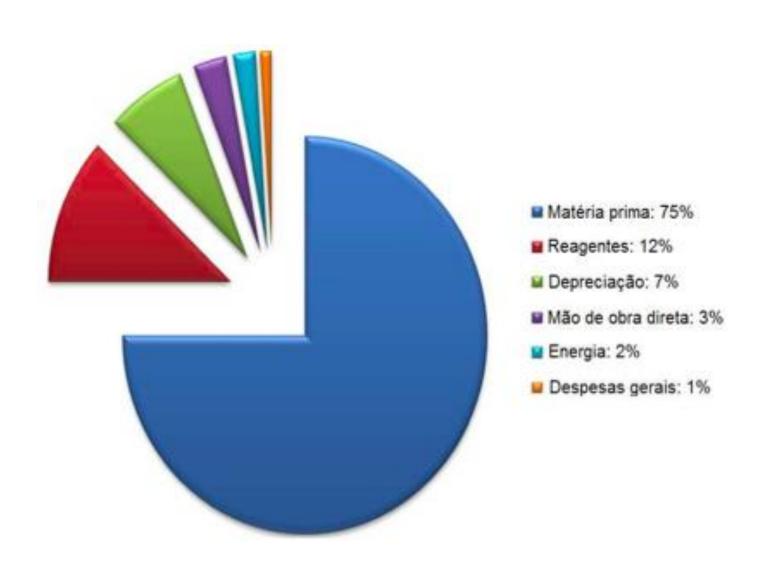

e Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP).

2,4 bilhões de litros/ano

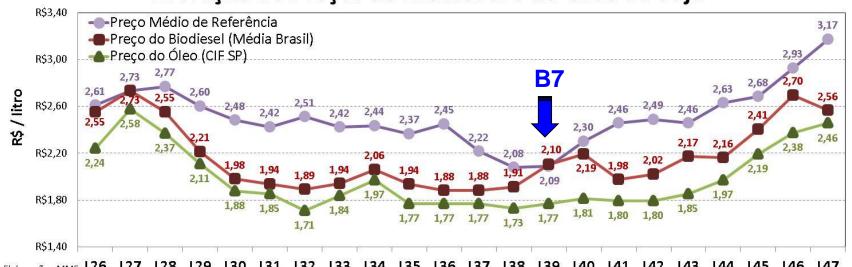
A meta para 01/01/2013 foi cumprida 3 anos antes

Lei 13.263 / Mistura Obrigatória:


- -B7 (23/03/16)
- -B8 em até 12 meses (01/03/17) Res. 11 CNPE
- -B9 em até 24 meses ???
- -B10 em até 36 meses (01/03/18) !!!
- -Perspectiva de B15 na sequência


MATÉRIA - BIODIESEL

GLICERINA DA PRODUÇÃO DE BIODIESEL



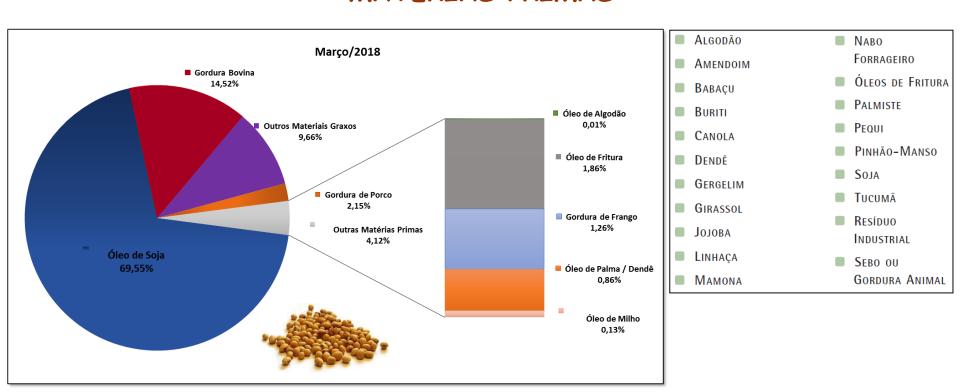
CUSTOS DO BIODIESEL

CUSTOS: MPs X BIODIESEL

Elaboração: MME L26 L27 L28 L29 L30 L31 L32 L33 L34 L35 L36 L37 L38 L39 L40 L41 L42 L43 L44 L45 L46

Fonte: Preços do biodiesel e de referência (ANP); óleo (Abiove)

OBS.: Preço do Biodiesel descontada a margem do adquirente; Preços com PIS/COFINS e CIDE, sem ICMS.


DESAFIOS

✓ Matérias primas alternativas que possuam baixo custo e não sejam comestíveis;

✓ Métodos de produção (catalisadores, qualidade do glicerol, menor custo energético, menor volume de resíduos gerados, adaptação para matérias primas alternativas).

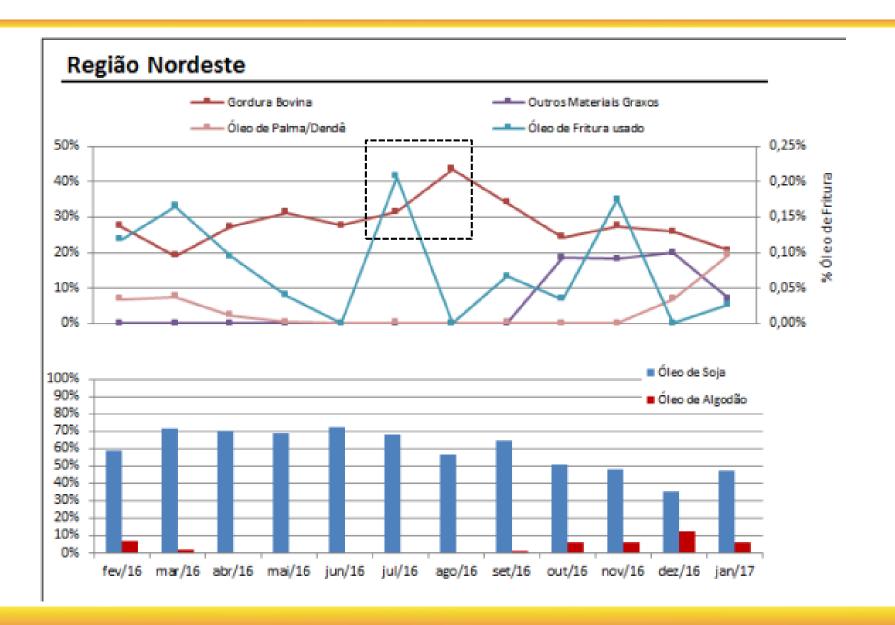
BIODIESEL - MATÉRIAS PRIMAS

MATÉRIAS PRIMAS

PRODUÇÃO DE BIODIESEL POR MATÉRIA PRIMA

Participação das Matérias-Primas Usadas na Produção do Biodiesel

Elaboração: MME OBS.: Até 2015 considera-se os dados consolidados do Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis.


BIODIESEL - MATÉRIAS PRIMAS

MATÉRIAS PRIMAS POR REGIÃO

JANEIRO DE 2017

Matéria Drives	Região									
Matéria-Prima	Norte	Nordeste	Centro-Oeste	Sudeste	Sul					
Óleo de Soja		47,02%	75,65%	26,72%	65,35%					
Gordura Bovina	100,00%	20,61%	4,07%	52,34%	18,59%					
Óleo de Algodão		5,77%								
Outros Materiais Graxos		7,08%	20,05%	1,37%	2,82%					
Óleo de Fritura usado		0,03%	0,12%	7,26%	0,14%					
Gordura de Porco			0,09%	0,01%	9,72%					
Gordura de Frango			0,02%	1,18%	1,05%					
Óleo de Palma / Dendê		19,49%	0,00%	11,11%						
Óleo de Colza/Canola					2,34%					

BIODIESEL - MATÉRIAS PRIMAS

SOJA

- Apresenta maior percentual da produção brasileira de óleos vegetais (ABIOVE);
- <u>Brasil</u>: Entre os maiores produtores Mundiais (CONAB).
- Competição direta com o setor alimentício;

- Arranjos produtivos muito bem estudados e implantados em boa parte do território brasileiro.
- Capaz de suprir a demanda Brasileira.

GORDURA ANIMAL

Brasil é um grande produtor e a oferta de tais matérias primas é substancial;

❖ ↓ custos.

▶2,5 milhões de toneladas de gordura provenientes do abate industrial de aves, bovinos e suínos (EMBRAPA).

MICROALGAS

Microalga	Conteúdo oleaginoso (% peso seco)
Botryococcus braunii	25-75
Chlorella sp.	28-32
Crypthecodinium cohnii	20
Cylindrotheca sp.	16-37
Dunaliella primolecta	23
sochrysis sp.	25-33
Monallanthus salina	>20
lannochloris sp.	20-35
lannochloropsis sp.	31-68
leochloris oleoabundans	35-54
litzschia sp.	45-47
haeodactylum tricomutum	20-30
chizochytrium sp.	50-77
etraselmis sueica	15-23

Elevador <u>teor de óleo</u> e necessita de baixa área cultivável. ☐ Produção de óleos com <u>eficiência</u> <u>superior</u> a obtida em plantações de oleaginosas.

A produtividade de óleo, por unidade de área empregada para o processo, pode ser até 100 vezes superior do que aquela obtida com oleaginosas.

VANTAGENS: ↓custos para colheita e transporte, fácil tratamento químico em função de suas pequenas dimensões, podem ser cultivadas sob condições impróprias para produção agrícola convencional.

DESAFIOS: (a) complexidade da logística de produção em larga escala;

- (b) alto custo na formulação dos meios de cultivo (micronutrientes);
- (c) ↑ demanda energética para secagem e extração;
- (d) ↑ acidez do material lipídico isolado (método de extração).

TABELA 2. Produtividade da cultura (kg.ha⁻¹), teor de óleo (%) e produção de óleo (l.ha⁻¹) das espécies potencialmente produtoras de óleo.

PRODUTIVIDADE

Espécie	Produtividade (kg/ha)	Óleo (%)	Produtividade óleo (I/ha)
Algodão	1400	15	263
Amendoin	2000	43	1075
Canola	2200	48	1320
Crambe	1500	40	750
Dendê	25000	20	6250
Girassol	2000	50	1250
Mamona	1500	45	844
Pinhão Manso	12000	52	7800
Soja	3000	20	750

Macaúba - 4.500 litros de óleo por hectares ano;

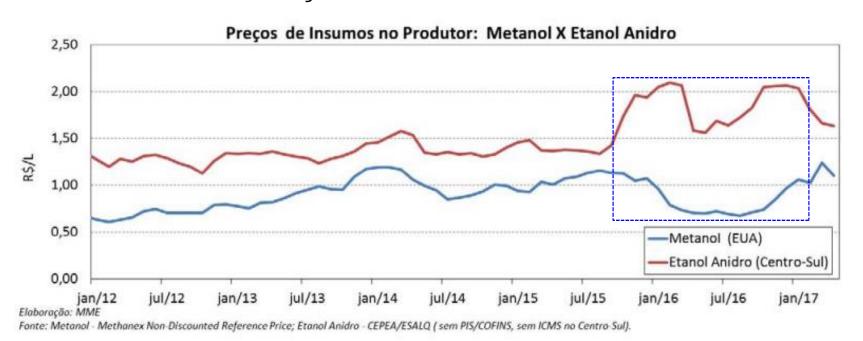
Nabo Forrageiro – 150 a 450 litros de óleo por hectare;

Microalgas – 58.700 litros de óleo por hectare (variável).

COMPOSIÇÃO QUÍMICA

↑AGS - problemas de solidificação em baixas temperaturas.

↑ viscosidade – entupimento dos filtros de óleo e do sistema de injeção.


Tabela 1. Composição química em ácidos graxos de diversos tipos de óleos vegetais.

Óleo vegetal

	Ácido graxo .			vii viginii								
		and grand	Soja	Milho	Algodão	Uva	Oliva	Amendoim	Palma	Cacau	Girassol	
	C12:0	Láurico	0,1	-	-						-	
Name Number of carbons Number of double bonds Position of double bonds	C14:0	Mirístico	0,2	0,2	0,8	0,0	0,0	0,0	0,9	0,1	0,1	
Formic acid 1: 0 O Not contained in lipids	C16:0	Palmitico	11,0	13,0	27,3	7,0	10,2	12,5	43,7	0,1	5,5	
Propionic acid 3: 0	C16:1	Palmitoléico	0,2	0,0	0,8	0,1	0,7	0,0	0,1	0,3	0,1	
Valerianic acid 5: 0 Q Caproic acid 6: 0 Q Caprylic acid 8: 0 Q	C17x0	Heptadecanóico	-	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	
Caprylic acid 8: 0 Capric acid 10: 0 Lauric acid 12: 0	C18x0	Esteárico	4,2	2,5	2,0	3,0	2,5	2,5	4,5	44,6	4,7	
Myristic acid 14: 0 Q	C18:1	Oléico	21,8	30,5	18,3	22,1	78,1	37,9	39,8	48,1	19,5	
Stearic acid 18: 0 Oleic acid 18: 1; 9	C18:2	Linoléico	53,3	52,1	50,5	67,2	7, 1	41,3	10,5	4,9	68,5	
Linoleic acid 18: 2; 9,12	C18:9	Linolênico	7,5	1,0	0,0	0,5	0,6	0,3	0,3	0,1	0,1	
Arachidonic acid 20: 4; 5,8,11,14 Sehenic acid 22: 0	C2010	Araquidico	0,3	0,5	0,3	0,1	0,5	0,5	0,2	1,5	0,3	
Erucic acid 22: 1; 13 CLignoceric acid 24: 0		Gadolèico	0,2	0,2	0,0	0,0	0,3	0,7	0,0	0,1	0,1	
Nervonic acid 24: 1; 15 A. Fatty acids (long-chain carboxylic acids) ** Essential in human nutrition	C22:0	Behènico	0,5	0,0	0,0	0,0	0,0	2,5	0,0	0,1	0,9	
	C22:1	Erúcico	0,3	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	
	C24:0	Lignocérico	0,4	0,0	0,0	0,0	0,0	0,8	0,0	0,0	0,2	

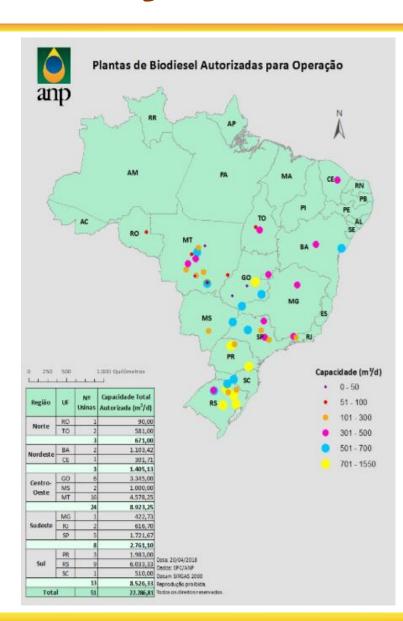
BIODIESEL - ÁLCOOIS REAGENTES

Preços – Metanol x Etanol

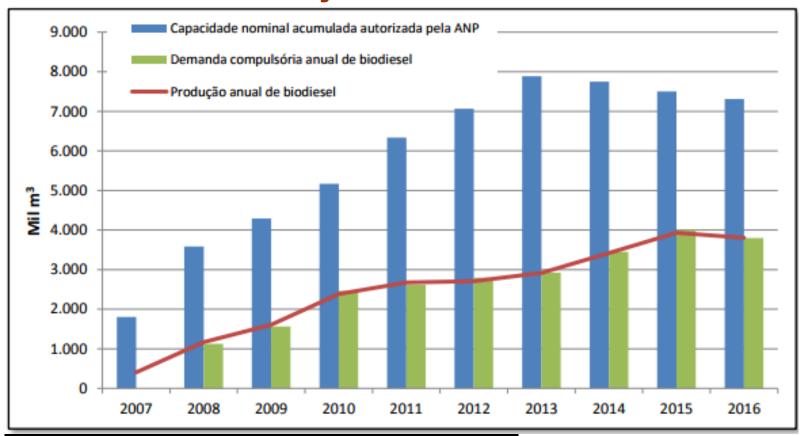
ETANOL

<u>Vantagens</u>: produto nacional, proveniente de fonte renovável, toxicidade reduzida, mais miscível no óleo.

<u>Desvantagens</u>: preço, cinética desfavorecida, dificulta a separação dos produtos.


BIODIESEL - INTRODUÇÃO

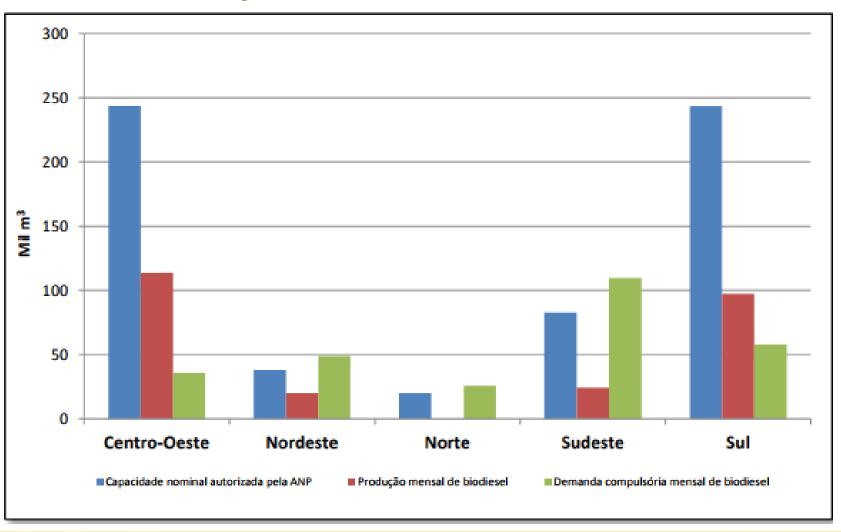
SETOR INDUSTRIAL


Setor industrial em Abr/2018:

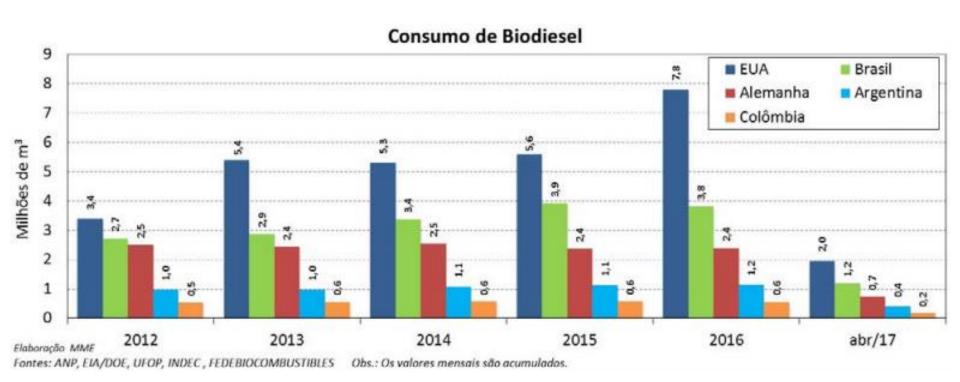
- 51 plantas produtoras autorizadas

- 2 novas plantas autorizadas para construção
- 3 autorizadas para ampliação de capacidade

PRODUÇÃO DE BIODIESEL



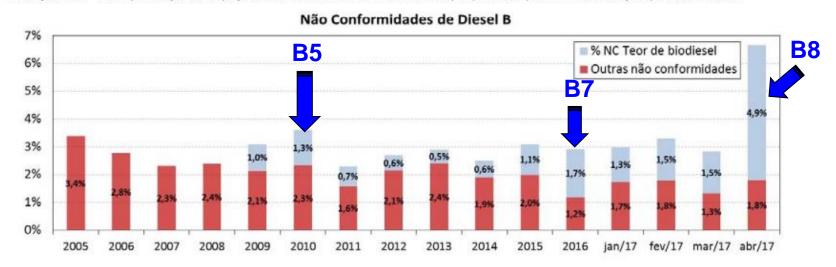
SEGUNDO MAIOR PRODUTOR MUNDIAL (1º EUA)


2017: 4,3 bilhões de L

2018: 5,4 bilhões de L

PRODUÇÃO DE BIODIESEL POR REGIÃO

CONSUMO DE BIODIESEL NO MUNDO


Desde 2012 o Brasil é o SEGUNDO MAIOR consumidor de biodiesel do mundo.

BIODIESEL - REFLEXÕES

Preço de Venda no Produtor (com PIS/COFINS e CIDE, sem ICMS) 3,00 2,50 R\$/L 2,00 Biodiesel (média leilões) 1,50 Diesel S-500 Diesel S-10 1,00 jan/13 jul/13 jan/14 jul/14 jan/15 jul/15 jan/16 jul/16 jan/17

Fonte: ANP

Elaboração: MME OBS: A partir de jul/2012 os preços de biodíesel consideram os valores realizados pelo produtor/importador de diesel na oferta para a distribuidora.

Fonte: ANP/PMQC

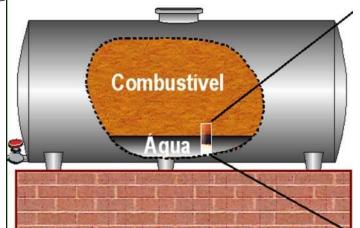
Elaboração: MME. OBS: A análise do teor de biodiesel iniciou-se somente em 2009. Antes disso, não havia análises para essa natureza.

BIODIESEL - NORMA

Controle de qualidade do biodiesel comercializado no Brasil

ANEXO

REGULAMENTO TÉCNICO ANP Nº 3/2014


Tabela I - Especificação do Biodiesel

CARACTERÍSTICA	UNIDADE	LIMITE	MÉTODO					
			ABNT NBR	ASTM D	EN/ISO			
Aspecto	-	LII (1) (2)	-	-	-			
Massa específica a 20° C	kg/m³	850 a 900	7148 14065	1298 4052	EN ISO 3675 EN ISO 12185			
Viscosidade Cinemática a 40°C	mm²/s	3,0 a 6,0	10441	445	EN ISO 3104			
Teor de água, máx.	mg/kg	200,0 (3)	-	6304	EN ISO 12937			

BIODIESEL - PROBLEMAS

Teor de água

- Diretamente relacionado ao processo de purificação e também ao armazenamento do biodiesel
- > Característica higroscópica: absorver água do ambiente.
- Um dos parâmetros que mais críticos para má qualidade.
- > Problemas:
 - Indesejável hidrólise do biodiesel: originando ácidos graxos
 - Proliferação de microorganismos
 - Corrosão em tanques de estocagem

BIODIESEL - PROBLEMAS

Problemas de qualidade no meio e fim da cadeia

Borras em Postos

B5. já misturado ao diesel

Fotos cedidas pela Fecombustíveis)

Alísio Vaz. 8° Fórum de debates sobre a qualidade de combustíveis. Rio de Janeiro, 2012.

BIODIESEL - PROBLEMAS

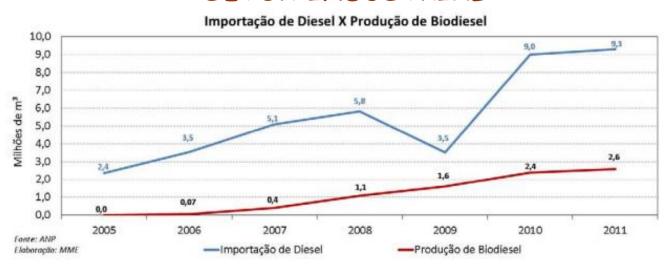
Ponto de entupimento de filtro a frio (PEFF)

Não pode solidificar até...

Resolução ANP Nº 45/2014

UNIDADES		LIMITE MÁXIMO, °C										
DA FEDERAÇÃO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
SP - MG - MS	14	14	14	12	8	8	8	8	8	12	14	14
GO/DF - MT - ES - RJ	14	14	14	14	10	10	10	10	10	14	14	14
PR-SC-RS	14	14	14	10	5	5	5	5	5	10	14	14

Praticamente não é comercializado biodiesel de sebo nos meses de inverno.


Biodiesel de sebo: PEFF próximo a 14 °C Biodiesel de soja: PEFF próximo a 0 °C

Alguns meses é feita mistura sebo/soja.

BIODIESEL - REFLEXÕES

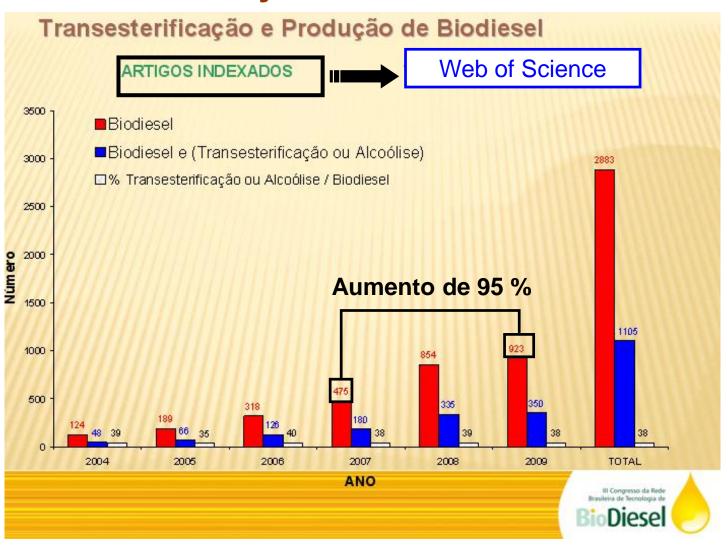
SETOR INDUSTRIAL

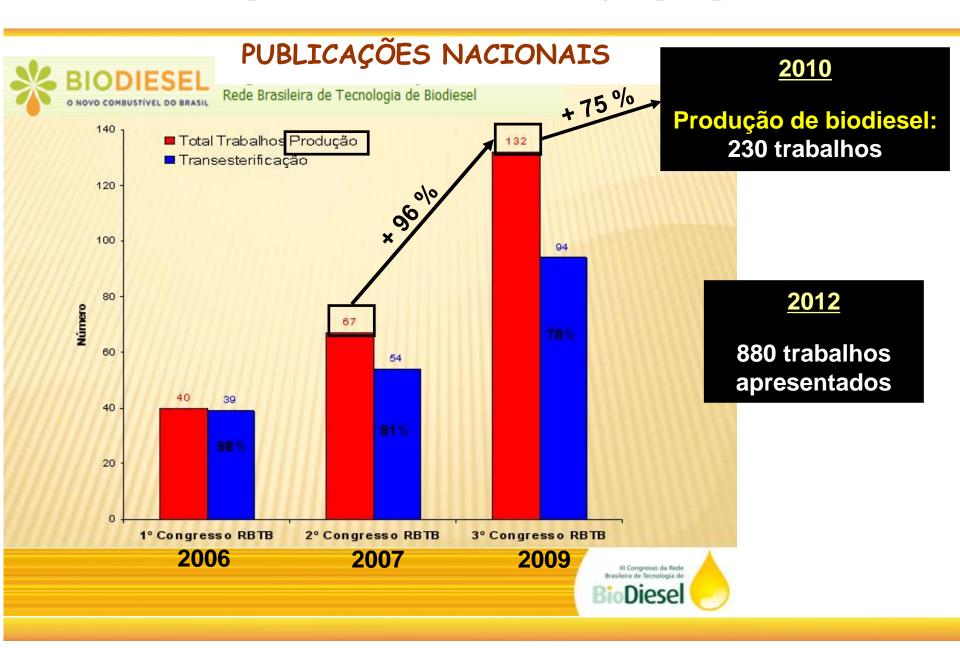
Entre 2005 e 2011:

- (+) 8,2 milhões de m³ de biodiesel produzidos no Brasil
- (+) Economia de US\$ 5,3 bilhões nas importações de diesel
- (-) 7,4 milhões de ton de óleo vegetal
- (-) O Brasil deixou de exportar US\$ 8,5 bilhões

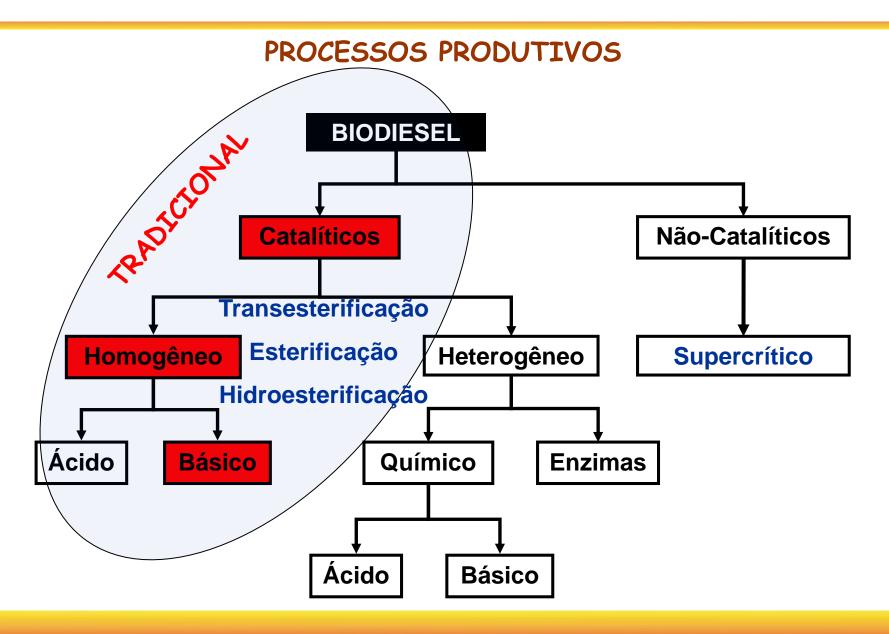
(-) SALDO NEGATIVO

(+) Devem ser incluídos: crédito ambiental, social, econômico, saúde humana, etc.

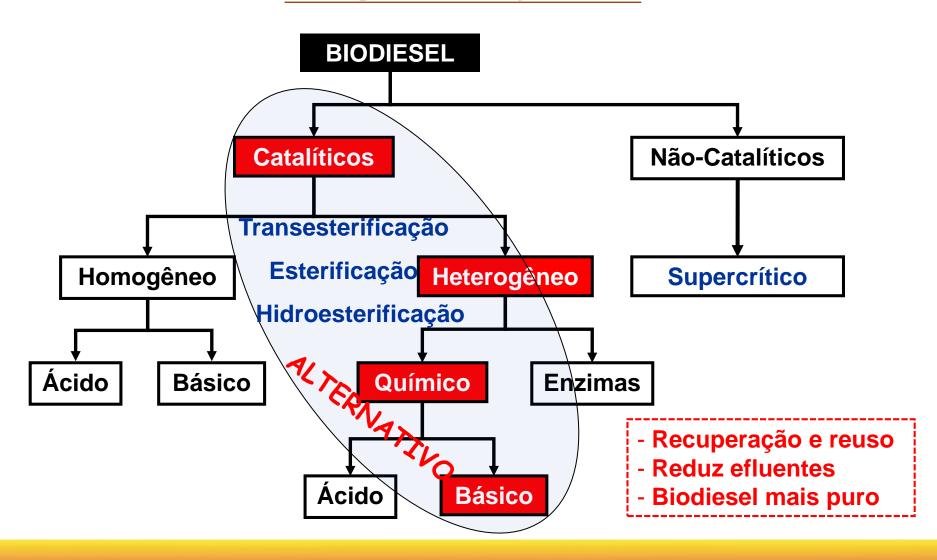

UBRABIO:


Reduz CO₂

+1% Biod. 45.000 empr. campo


BR 4.000 mortes/ano

PUBLICAÇÕES INTERNACIONAIS

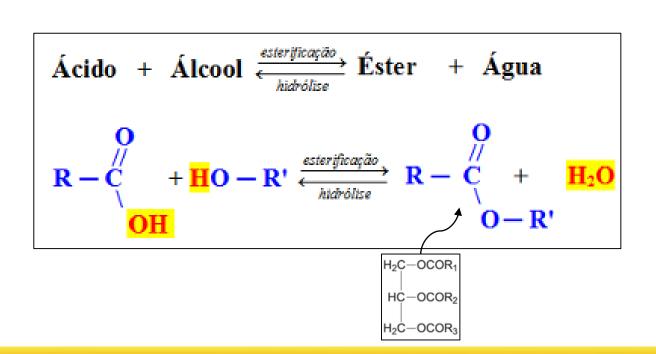


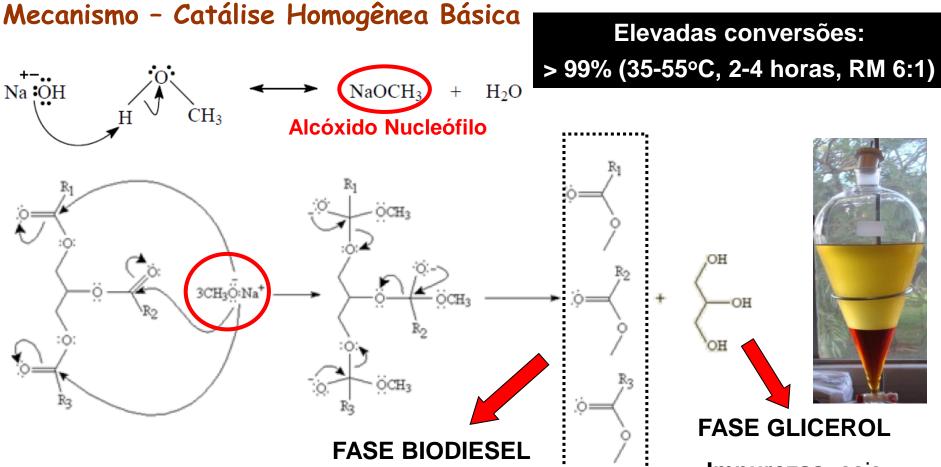
BIODIESEL - PRODUÇÃO

BIODIESEL - PRODUÇÃO

PROCESSOS PRODUTIVOS

TRANSESTERIFICAÇÃO

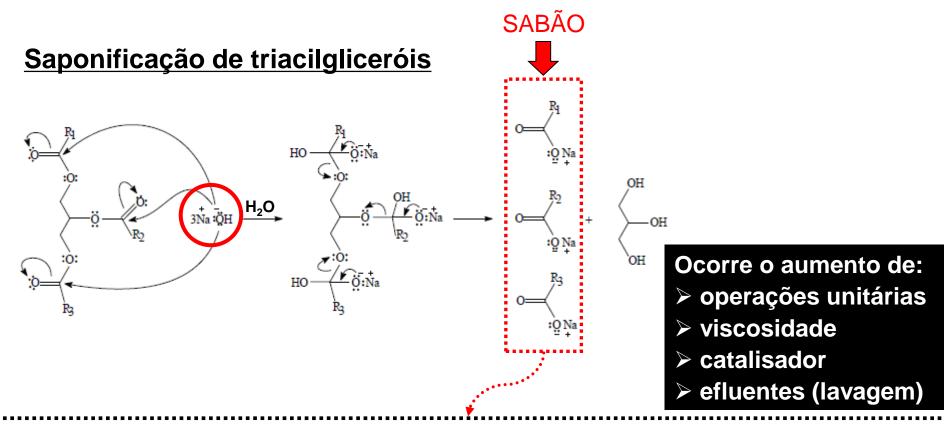

Baixa acidez (trans. alcalina)


ESTERIFICAÇÃO

Acidez elevada

HIDRÓLISE

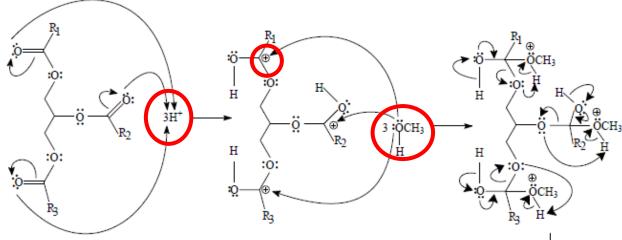
Acidez moderada (condições reacionais)



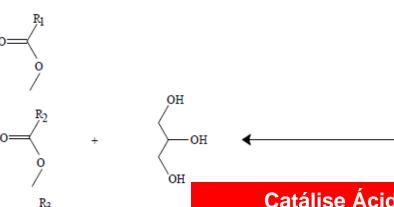
Impurezas: triacilgliceróis não convertidos; semi-convertidos (mono e diacilgliceróis); álcool.

impurezas: sais (emulsões), álcool + água e metóxido de sódio que não reagiu.

Mecanismo - Catálise Homogênea Básica

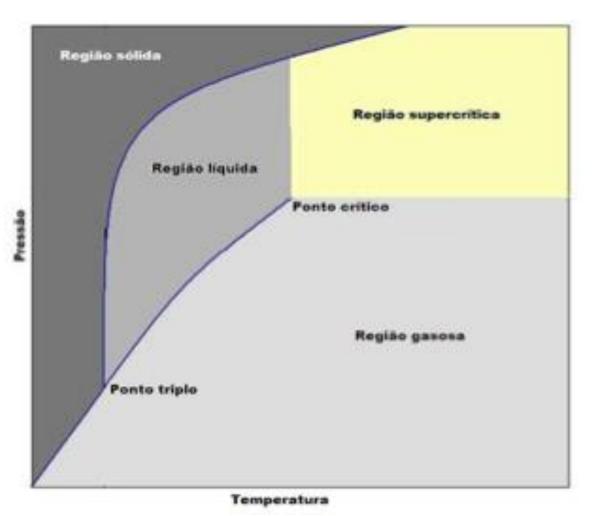

A combinação completa entre o catalisador e o álcool evita a formação de sabão.

Também pode ser formado pela reação de neutralização dos ácidos graxos livres:


NaOH + AGL ——→SABÃO + H₂O

Mecanismo - Catálise Homogênea Ácida

- adição do ácido em 1 única etapa

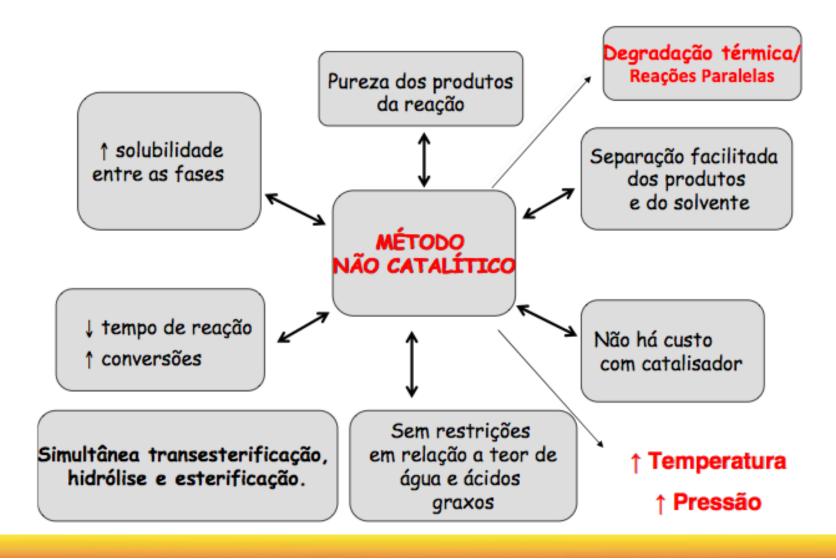

- converte os ácidos graxos livres presentes na fonte de triacilglicerídeos em biodiesel por esterificação

Catálise Ácida:

- > Evita a saponificação
 - 6 vezes mais lenta
- **Temperaturas superiores**

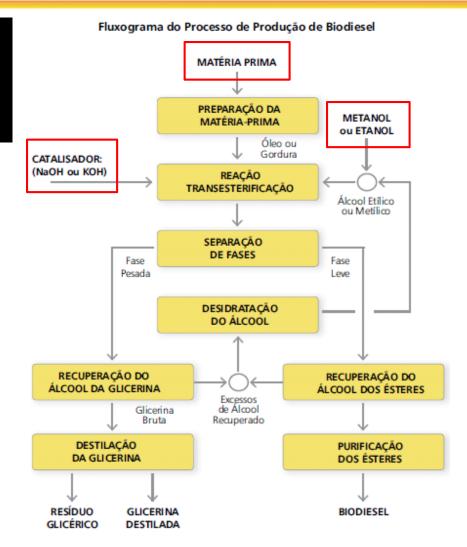
PROCESSO ALTENATIVO - NÃO CATALÍTICO

Álcool em condições supercríticas


↑ Solubilidade

↓ Viscosidade ↑ Difusividade

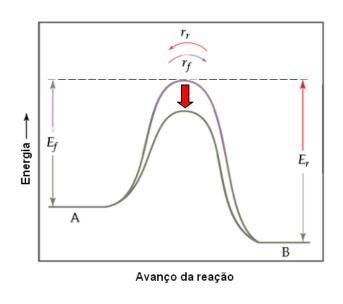
DIAGRAMA PT PARA UMA SUBSTÂNCIA PURA


PROCESSO ALTENATIVO - NÃO CATALÍTICO

CARACTERÍSTICAS DO MÉTODO

BIODIESEL - ENTRAVES

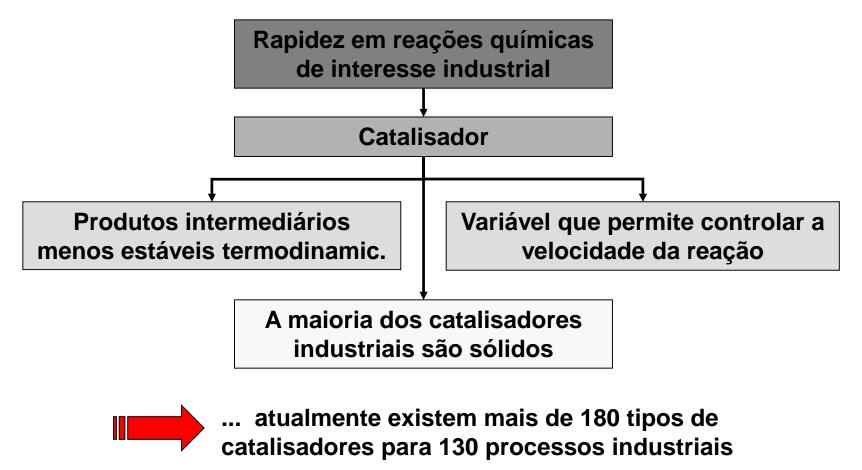
Existem alguns entraves tecnológicos que dificultam a expansão da produção de biodiesel



Fonte: Parente, Expedito – Uma Aventura Tecnológica num País Engraçado – Disponível em: www.tecbio.com.br.

CATALISADORES

<u>Catalisadores:</u> substâncias capazes de modificar a energia de ativação de uma reação química, sem sofrer alteração química.


<u>Função:</u> tornar a reação mais veloz, promovendo um mecanismo reacional diferente sem alterar o equilíbrio químico.

INTRODUÇÃO À CATÁLISE HETEROGÊNEA

Importância da catálise

42% Zeólitas – 30% Óxidos – 10% Fosfatos – 10% Resinas trocadoras de íons - 0,25% Argilas – 0,20% Carbonatos – 0,20% Enzimas imobilizadas – 7,35% Outros.

INTRODUÇÃO À CATÁLISE HETEROGÊNEA

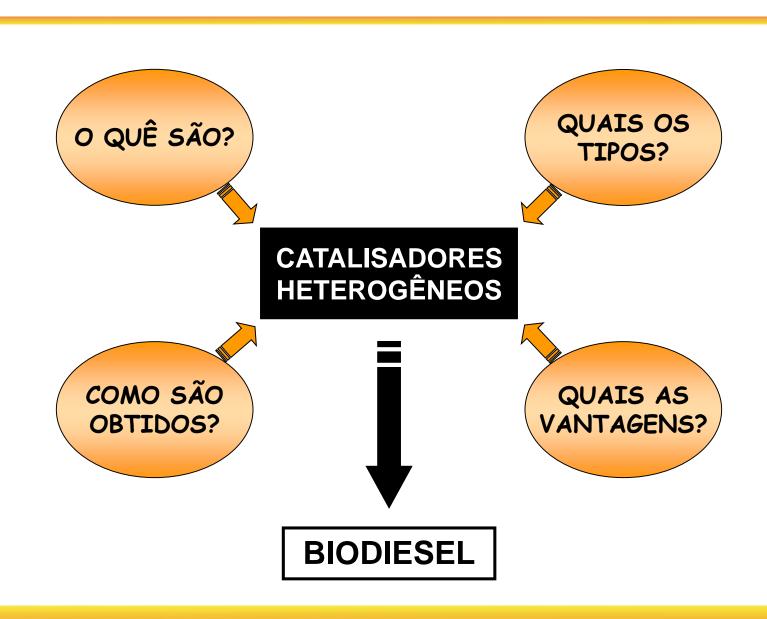
Definições

Catálise é o fenômeno em que uma quantidade relativamente pequena de um material estranho à estequiometria – o **catalisador heterogêneo** – aumenta a velocidade de uma reação química sem ser consumido no processo (IUPAC, 1976).

$$R \longrightarrow P$$
 $R = reagente$ $P = produto$ $R + X \longrightarrow RX$ $RX = intermediário$ $X = catalisador$

O catalisador intervém no mecanismo, mas é regenerado no fim de cada ciclo reacional.

Duração ilimitada??? Na prática isso não ocorre (desativação)...


INTRODUÇÃO À CATÁLISE HETEROGÊNEA

Seletividade

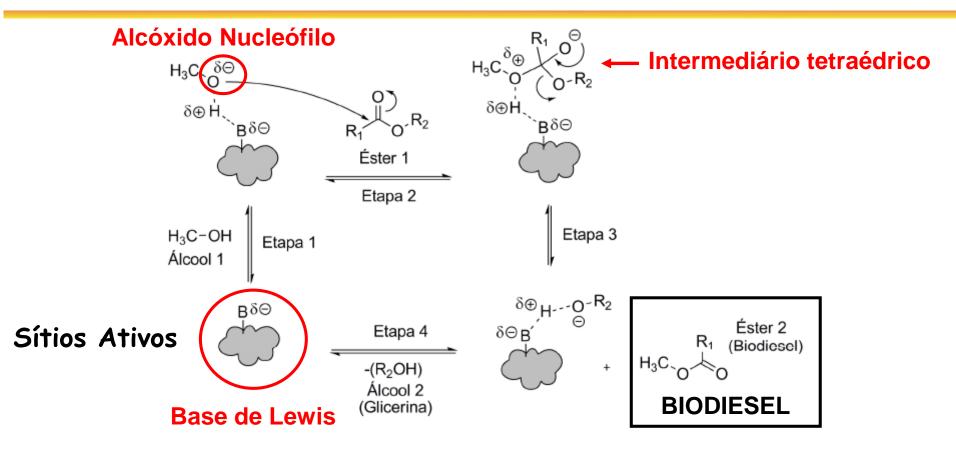
Em geral, a partir dos mesmos reagentes haverá várias reações termodinamicamente possíveis, onde se verifica que catalisadores diferentes originam produtos diferentes. Em cada caso, o catalisador **favorece uma** entre várias reações possíveis.

TABELA	1.3 — REACÇÕES	DO GÁS DE SÍNTESE	$(CO + H_2)$
--------	----------------	-------------------	--------------

Catalisador	Condições	Produtos	
Ni	100-200 °C, 1-10 atm	$CH_4 + H_2O$	
ZnO-Cr ₂ O ₃	400 °C, 500 atm	$CH_3OH + H_2O$	
Co/ThO ₂	190 °C, 1-20 atm	CH ₄ , C ₂ H ₆ e alcanos superiores, + H ₂ O	
Fe + alcali	315 °C, 15 atm	Idem + olefinas, álcoois e ácidos	
Ru	200 °C, 200 atm	Alcanos de peso molecular elevado + H ₂ O	
ThO ₂	400 °C, 200 atm	Alcanos de cadeia ramificada + + H ₂ O	

CATÁLISE HETEROGÊNEA

Catalisadores heterogêneos: ácidos e básicos

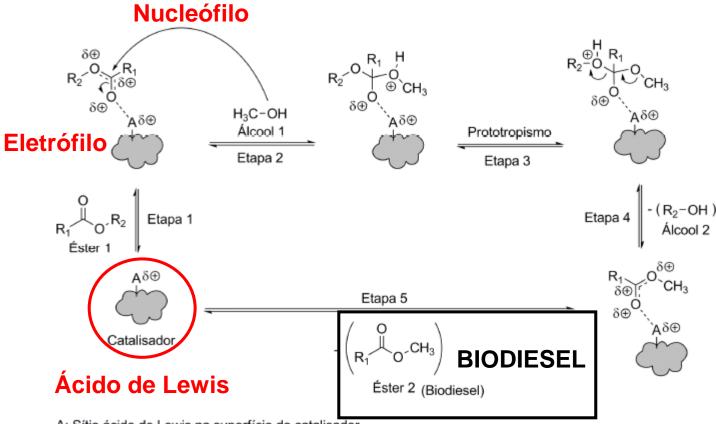

- São classificados como catalisadores de Bronsted ou de Lewis (ou os dois);
- 117 processos industriais utilizam catalisadores ácidos e apenas 10 básicos / craqueamento do petróleo;

COMO O CAT. HETEROGÊNEO ATUA NA TRANSESTERIFICAÇÃO?

Diferentes mecanismos são apresentados na literatura:

- Adsorção do álcool na superfície do catalisador (Cat. Básica);
- Adsorção do triacilglicerídeo (Cat. Ácida).

MECANISMO - CATÁLISE HETEROGÊNEA BÁSICA



B: Sítio básico de Lewis na superfície do catalisador

R₁: Grupo alquil do ácido graxo

R₂: Ésteres alquílicos de ácidos graxos

MECANISMO - CATÁLISE HETEROGÊNEA ÁCIDA

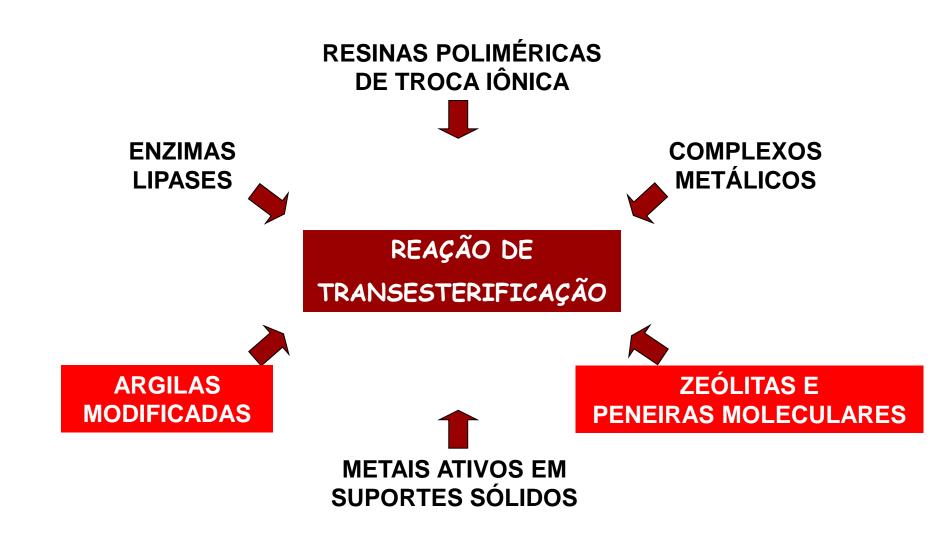
A: Sítio ácido de Lewis na superfície do catalisador

R₁: Grupo alquil do ácido graxo

R2: Grupo glicerínico do triglicerídeo

CATALISADORES HETEROGÊNEOS - VANTAGENS

- > Toxicidade reduzida ou nula
- Reduz a corrosão dos reatores
- > Evita a formação de sabão
- Reuso do catalisador (filtração e ativação)
- > Biodiesel mais puro (dispensa lavagem)
- > Glicerina mais pura
- Processo mais limpo (reduz a geração de efluentes)



CATALISADORES HETEROGÊNEOS - POTENCIAL

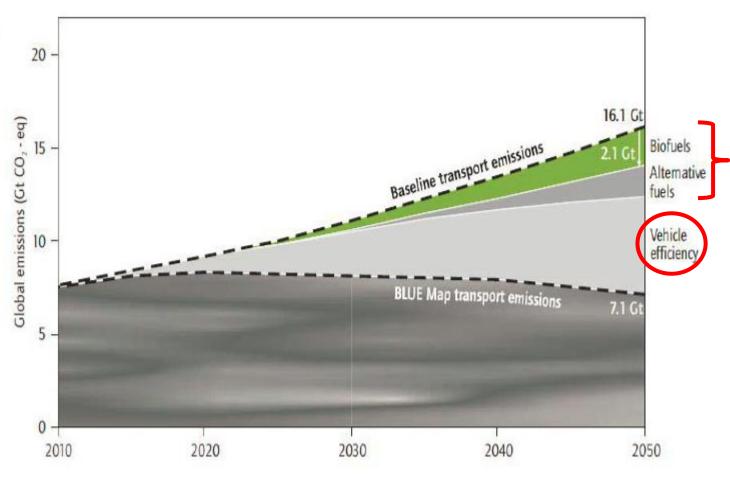
O potencial catalítico depende...

- Características ácido-base da superfície
- Quantidade, localização e disponibilidade de sítios ativos
- Área superficial específica
- Porosidade (tamanho e morfologia)
- Estabilidade química e térmica
- Insolubilidade no meio reacional

CATALISADORES HETEROGÊNEOS - TIPOS

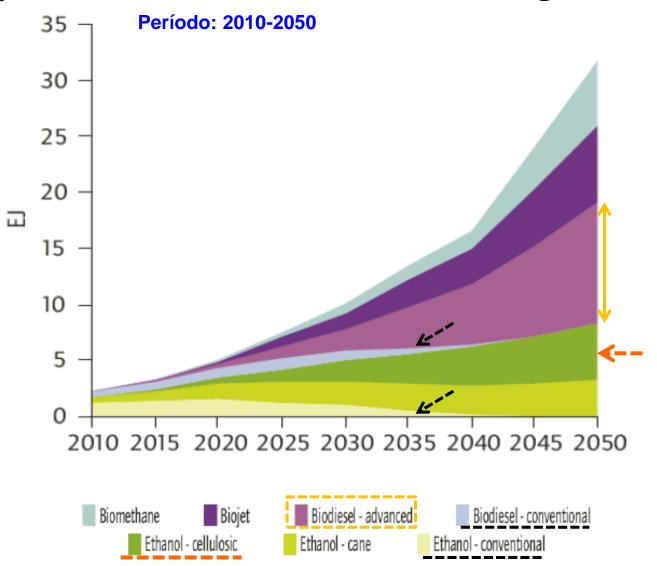
DESAFIOS

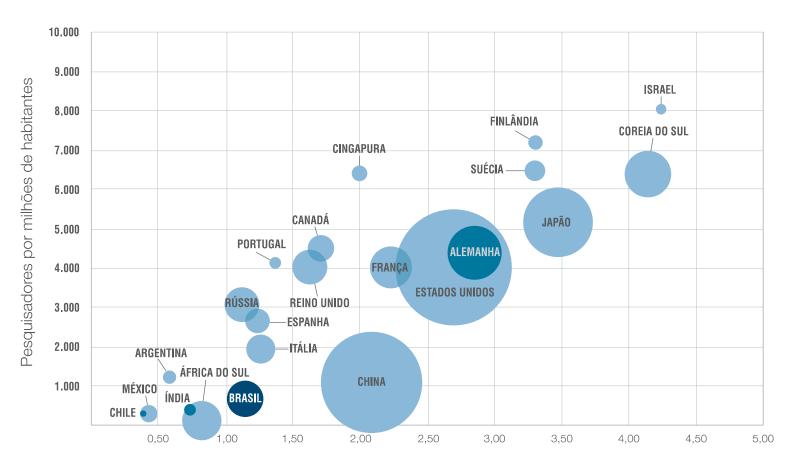
Produção de biodiesel:


- Variações do preço das matérias primas (mercado);
- Uso de matérias primas de baixo custo;
- Matérias primas com elevada produtividade/teor lipídico;
- Maiores conversões em menores tempos reacionais;
- Desenvolvimento de catalisadores mais eficientes;
- Produção em grande escala (processo contínuo);
- Novas rotas de produção;
- Redução de efluentes.

PESQUISA BÁSICA E APLICADA!!!

CENÁRIOS - BIOCOMBUSTÍVEIS


Setor de Transporte (baixo C)


CENÁRIOS - BIODIESEL

Participação dos Biocombustíveis a Longo Prazo

P&D e PIB

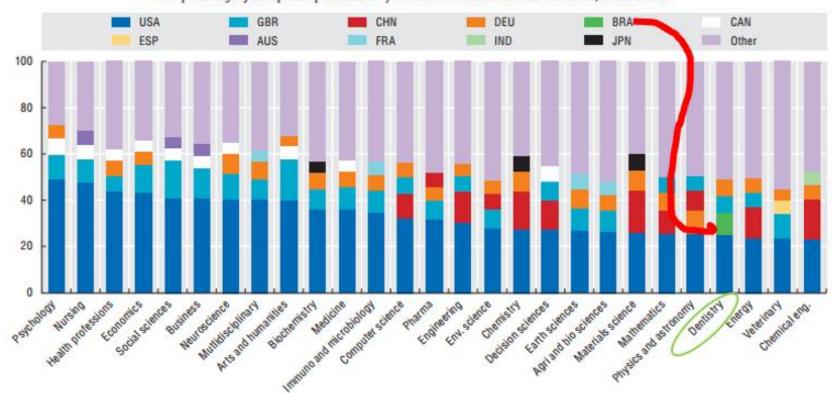
Percentual dos dispêndios em P&D em relação ao PIB

Fonte: OECD, Main Science and Technology Indicators 2015/1; Índia: Institute for Statistics, UNESCO; Brasil: MCTI.

Obs. 1: O tamanho dos círculos indicam o dispêndio em P&D em bilhões de US\$ correntes de PPC.

Obs. 2: Foram utilizados os últimos dados disponíveis para cada país.

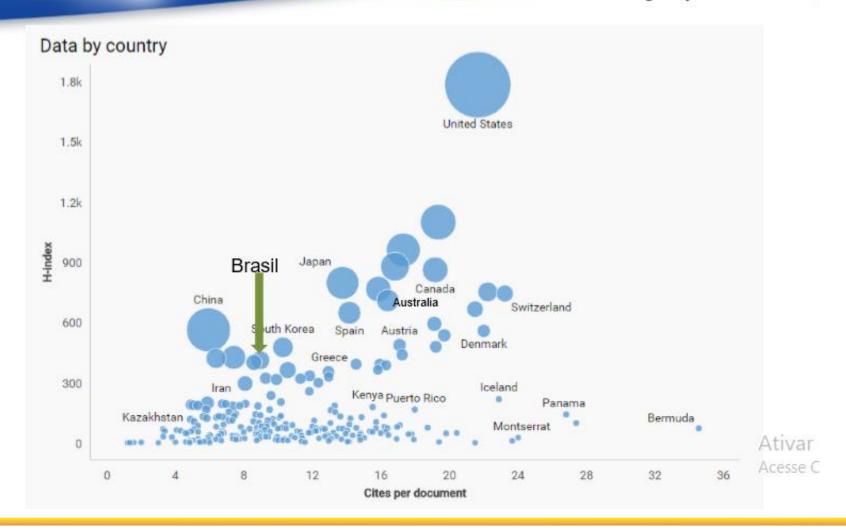
FIGURA 12 - Dispêndios e recursos humanos em P&D


PRODUÇÃO CIENTÍFICA

Posição do Brasil em relação à produção científica

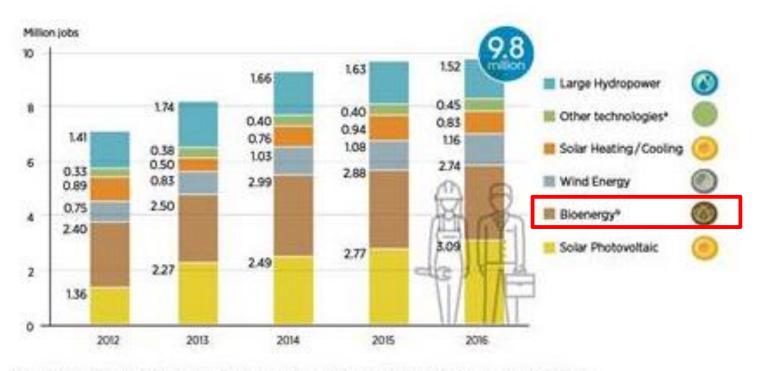
56. Top 4 countries with the largest number of 10% top-cited publications, by field, 2003-12

As a percentage of all top-cited publications by authors in OECD and BRIICS economies, whole counts



PRODUÇÃO CIENTÍFICA

Posição do Brasil em relação à produção científica



Scimago - julho 2016

EMPREGOS NO MUNDO - ENERGIAS RENOVÁVEIS

In the last 5 years the number of solar and wind jobs has more than doubled

Note: a) thickels grothermal energy, full repower (small), committed solar power (CSP), thunsteal and industrial works, occurs energy and miscellarenus. A) modelle-Raud Noteins, solid browsis and broom.

EMPREGOS NO MUNDO - ENERGIAS RENOVÁVEIS

62% of global renewable energy jobs are in Asia

Bibliografia Recomendada

LIVROS

KNOTHE, G., GERPEN, J. V., KRAHL, J., RAMOS, L. P. Manual de Biodiesel, Ed. Edgard Blucher. São Paulo, 2006, 340 p.

FONTANA, J. D. Biodiesel para leitores de 9 a 90 anos. Ed. UFPR. Curitiba, 2011, 253 p.

ARTIGOS

Ramos, L. P., Silva, F. R., Mangrich, A. S., Cordeiro, C. S. Tecnologias de Produção de Biodiesel. Revista Virtual de Química, 3(5) (2011) 385-405.

Lôbo, I. P., Ferreira, S. L. C., Cruz, R. S. Biodiesel: Parâmetros de qualidade e métodos analíticos. Química Nova, 32(6) (2009) 1595-1608.

Cordeiro, C. S., Silva, F. R., Wypych, F., Ramos, L. P. Catalisadores heterogêneos para a produção de monoésteres graxos (biodiesel). Química Nova, 34(3) (2011) 477-486.

Chisti, Y. Biodiesel from microalgae. Biotechnology Advances, 25 (2007) 294-306.

Bibliografia Recomendada

PERIÓDICOS

Applied Energy

Biomass and Bioenergy

Biomass & Energy

Bioresource Technology

Energy & Fuels

Energy & Environmental Science

Environmental Science & Technology

Fuel

Global Environmental Change

International Journal of Energy Research

Journal Brazilian Chemical Society

Journal of Power Sources

Renewable Energy

Renewable & Sustainable Energy Reviews

OBRIGADO PELA ATENÇÃO!!!

CONTATO:

Prof. Dr. Helton José Alves

Universidade Federal do Paraná – UFPR Setor Palotina

R. Pioneiro, 2153, Jd. Dallas,

CEP: 85950-000, Palotina – PR

Fone: (44) 3211-8595

e-mail: helquimica@gmail.com

