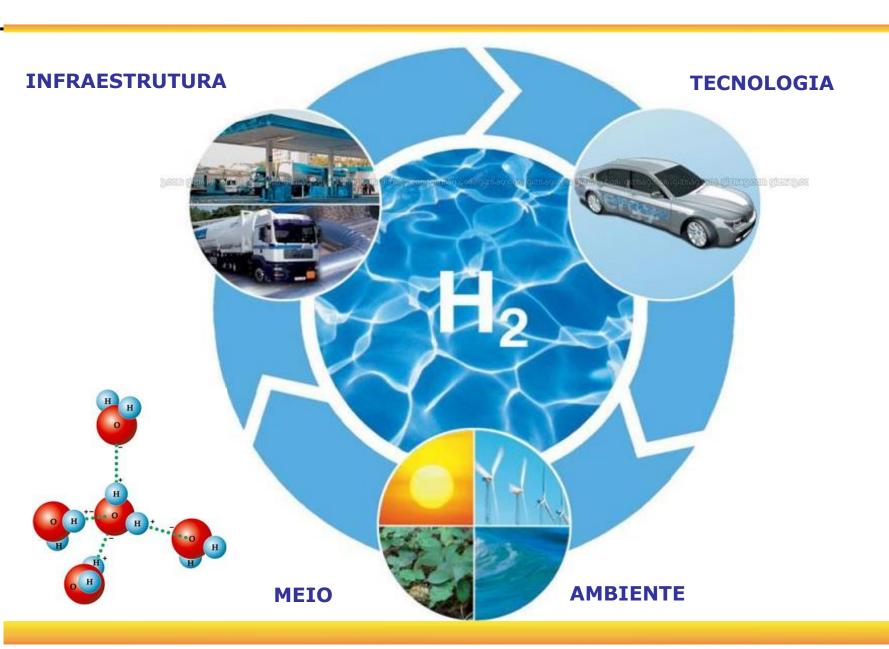
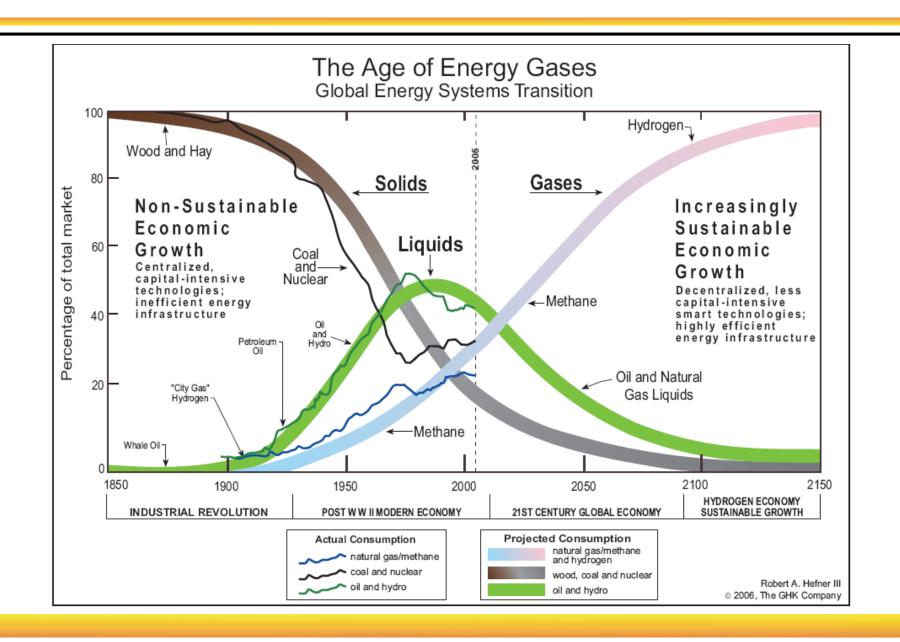
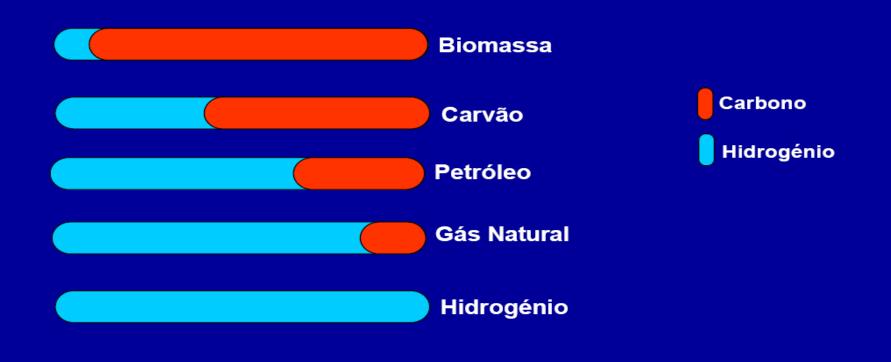
Programa de Pós-Graduação em Bioenergia

Disciplina: Combustíveis e Biocombustíveis

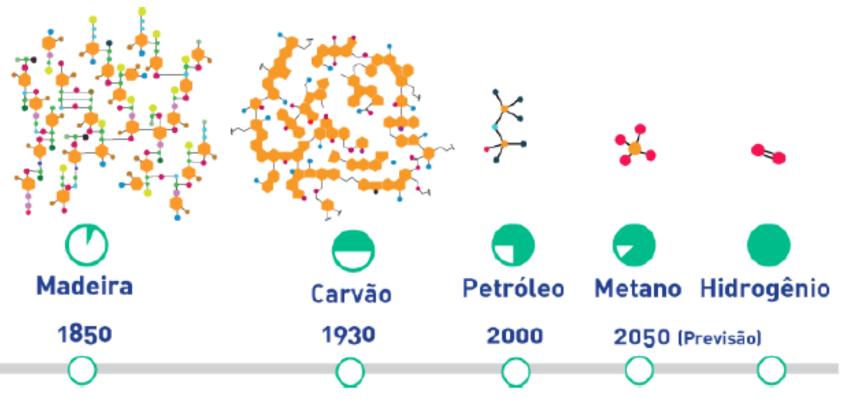
Aula: Tecnologias de Produção de Hidrogênio


Prof. Dr. Helton José Alves


Palotina, 22/05/19



HIDROGÊNIO


TRANSIÇÃO ENERGÉTICA

Menos carbono ⇒ menos emissões

Progressão no conteúdo em hidrogênio dos combustíveis

Adaptado de R. B. Gupta, Editor, "Hydrogen Fuel-Production, Transport and Storage". Taylor & Francis Group, B. Raton, Fl, USA, 2009.

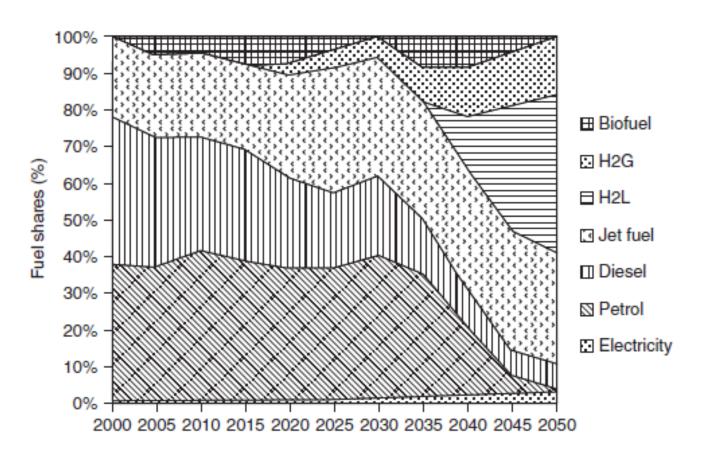


FIGURE 3 | Transport sector fuel mix in the reference scenario (Ref 8, p. 1215). (Reproduced with permission from Ref. 8. Copyright 2013, Hydrogen Energy Publications, LLC)

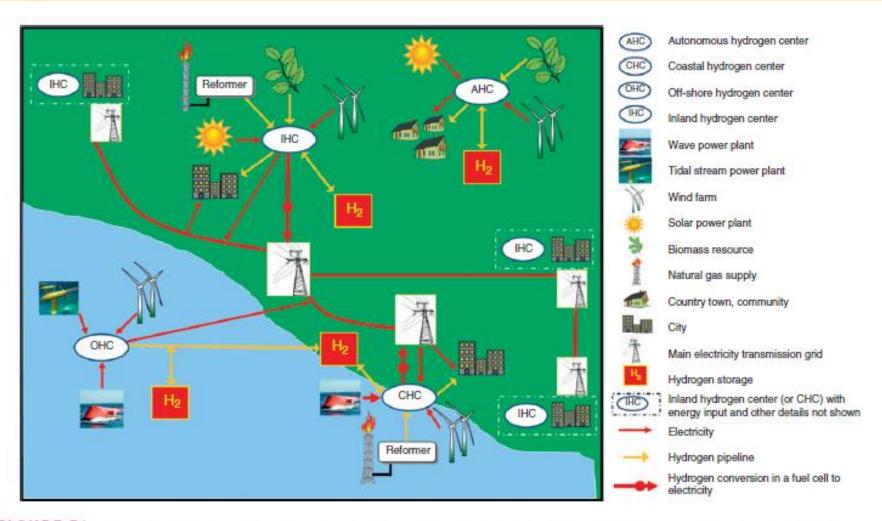


FIGURE 5 | A schematic illustration of the proposed hierarchy of sustainable hydrogen centers showing the principal renewable energy (RE) inputs to each type of center, the local hydrogen distribution system, and the interconnection of higher-order centers via the main electricity grid (Ref 13, p. 1188). (Reproduced with permission from Ref 13. Copyright 2012, Hydrogen Energy Publications, LLC)

CONCEITOS GERAIS SOBRE GASES E HIDROGÊNIO

O HIDROGÊNIO

- Elemento mais abundante do universo (95% em número de átomos e 75% em massa);
- 99% da energia do universo é proveniente do hidrogênio;
- fusão nuclear (consumo de 4 milhões de ton de hidrogênio/s) / núcleo do Sol (10 milhões de °C) / pressão 10.000 vezes maior do que no centro da terra / 0,7% mais pesado que o He / sobra de matéria se transforma em luz e calor;
- ocorrência x disponibilidade.

(o ar possui < 1 ppm de hidrogênio)

PROPRIEDADES DO H2

PROPRIEDADES	VALORES	
Fórmula Química	H_2	
Massa Molecular	2,0158 g/mol	
Qtde de energia por unidade de massa	145,0 MJ/kg	
Massa volumétrica	0,08967 kg/m ³	
Ponto de ebulição	- 252,88 °C	
Ponto de fusão	- 259,20°C	

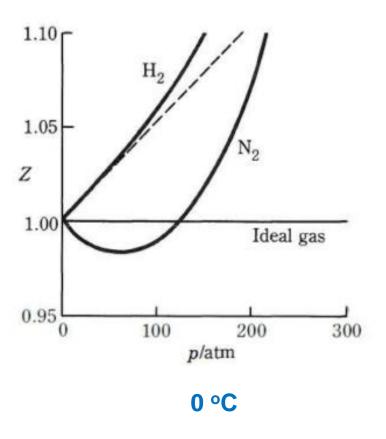
PROPRIEDADES DO H2

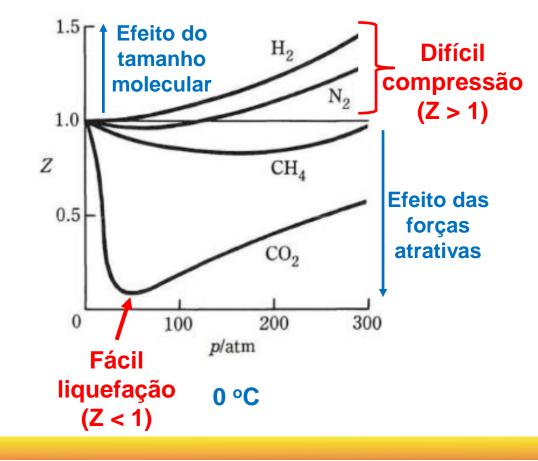
Tabela 1.1 Propriedades físicas do hidrogênio comparadas a outros combustíveis

Propriedades	H ₂	CH ₄	Gasolina
Temperatura de autoignição (°C)	585	540	228-501
Temperatura de chama (°C)	2.045	1.875	2.200
Limite de ignição no ar (% v.)	4-75	5,3-15	1,0-7,6
Energia mínima de ignição (mWs)	0,02	0,29	0,24
Velocidade de propagação da chama no ar (m/s)	2,65	0,4	0,4
Coeficiente de difusão no ar (cm²/s)	0,61	0,16	0,05
Toxicidade	Não	Não	Sim

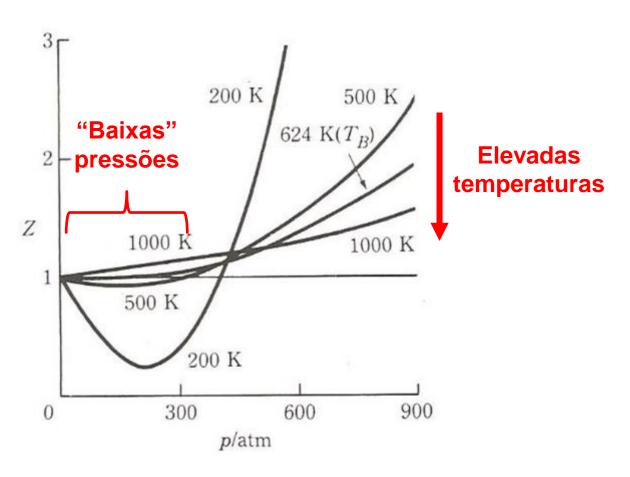
GASES REAIS: Desvios do Comportamento Ideal







$$Z = \frac{\bar{V}}{\bar{V}(ideal)} = \frac{P\bar{V}}{RT}$$



GASES REAIS: Implicações da Equação de V. D. W.

Etileno a várias temperaturas

PRODUÇÃO E USOS DO HIDROGÊNIO

É FÁCIL PRODUZIR HIDROGÊNIO ???

O gás hidrogênio H₂ foi produzido pela reação química entre metais e ácidos fortes (Paracelso 1493-1541).

VÍDEO 1

O HIDROGÊNIO - USO EM TRANSPORTE

- Primeiro dirigível decolado com hidrogênio em 1852 (Henri Giffard);

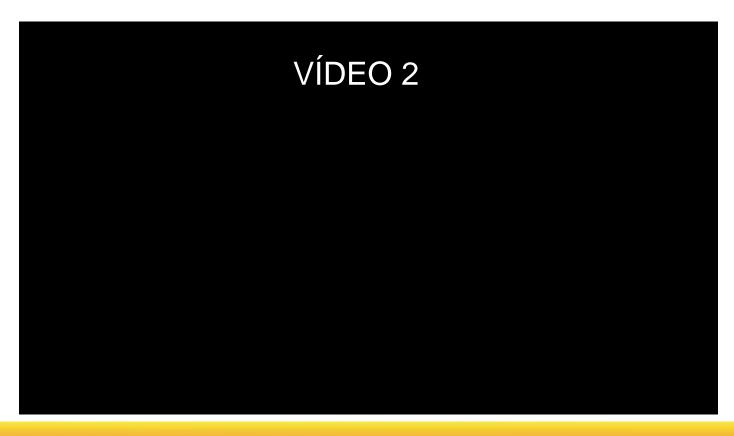
Zeppelins: voos programados (1900) / plataformas de observação e bombardeadores durante a 1ª Guerra Mundial (1914);

<u>Dirigível Hindenburg</u>: Alemanha para EUA - 97 passageiros (36 mortes)

Noticiário recente...

USO DE GASES EM TRANSPORTE

Bullet é feito de um tipo especial de Kevlar (4 mm de espessura), usado em materiais a prova de bala, e poderá voar a uma altura de até 6.000 metros a 128 km/h.



Um dos problemas do uso de dirigíveis é o alto custo do hélio (não inflamável). Podem usar até 6 milhões de litros de He (200 mil botijões de gás).

 O dirigível será vendido por US\$ 8 milhões, e a E-Green planeja disponibilizar toda uma frota para ser alugada por valores a partir de US\$ 300 mil por mês.

O HIDROGÊNIO - COMBUSTÃO

A combustão de uma pequena bolha de hidrogênio não é muito perigosa. O fósforo que você usa para acender a bolha libera dez vezes mais energia do que a queima de hidrogênio. Mas o hidrogênio em grandes quantidades pode ser realmente fatal.

O HIDROGÊNIO - COMBUSTÃO

Como funciona de verdade?

HIDROGÊNIO - VETOR ENERGÉTICO

Vetor energético: é uma substância ou fenômeno que pode ser usado para produzir trabalho mecânico/calor, ou então para desencadear processos químicos ou físicos.

<u>Características/exemplos</u>:

Dentre os vetores mais comuns encontram-se molas, baterias eletroquímicas, condensadores, o hidrogênio, a água represada das barragens, o ar pressurizado, o carvão, o petróleo, o gás natural, e a lenha.

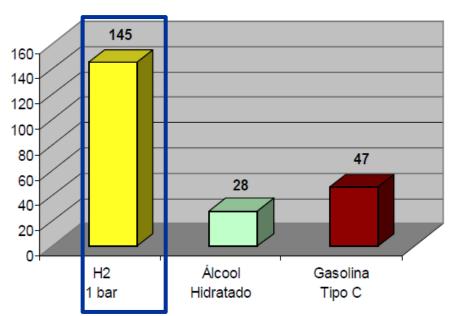
O hidrogênio é um tipo de vetor energético que poderá vir a ser utilizado na distribuição de energias renováveis.

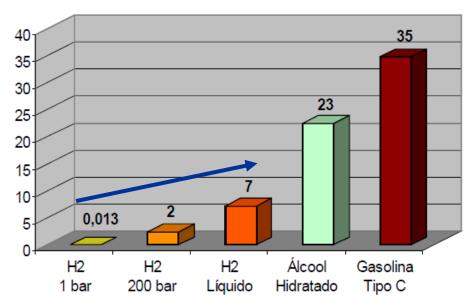
Ex.: a eletricidade gerada por turbinas eólicas pode ser aplicada na produção de hidrogênio através da eletrólise da água, que é por sua vez usado num veículo de células de combustível a hidrogênio.

HIDROGÊNIO - VANTAGENS

- Pode ser obtido de diversas fontes (fósseis ou renováveis)
- Sua conversão produz apenas água (menor poluição local)
- Torna vários processos mais eficientes




TECNOLOGIAS DE PRODUÇÃO DE HIDROGÊNIO


Hidrogênio: Prós e Contras

H₂ necessita ser armazenado a altas pressões ou liquefeito.

Densidade energética por volume (10³MJ m⁻³)

PODER CALORÍFICO MAIOR DO QUE QUALQUER OUTRO TIPO DE COMBUSTÍVEL: 145 MJ/kg

A energia de 1 L de H2 equivale a 0,27 L de gasolina

ARMAZENAMENTO E TRANSPORTE DE HIDROGÊNIO

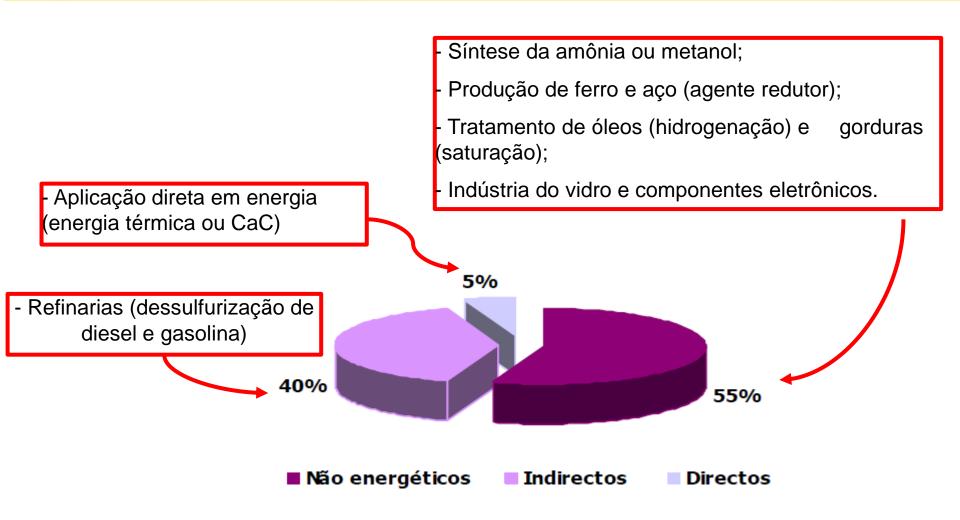
ARMAZENAMENTO E TRANSPORTE - H2

A massa das carretas "carregadas" é próxima da massa das carretas vazias.

Caminho: GERAÇÃO ON-SITE

Menor densidade no estado gasoso...

ARMAZENAMENTO E TRANSPORTE - H2


CNTP = 1 atm e 0 °C

1 kg de $H_2 = 11,2 \text{ m}^3$ 1 kg de $CH_4 = 1,4 \text{ m}^3$

- Reservatórios de Gás Hidrogênio Comprimido;
- Reservatórios para Hidrogênio Líquido;
- Hidretos Metálicos;
- Adsorção de Carbono;
- Microesferas.

USOS DO HIDROGÊNIO

MERCADO DO HIDROGÊNIO

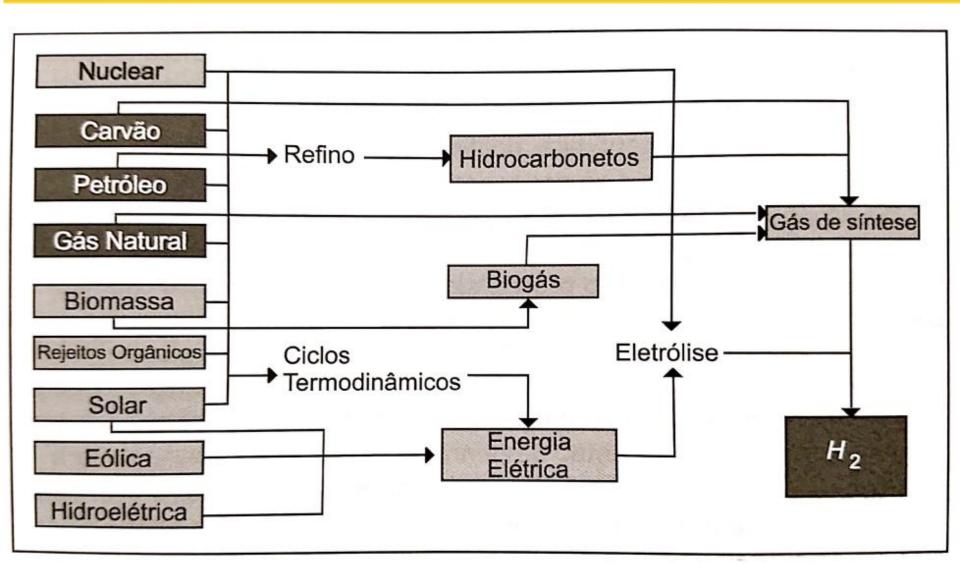
Mercado Mundial de H₂

Produção Global: 50 bilhões m³ / ano Produção USA: 11 bilhões m³ / ano

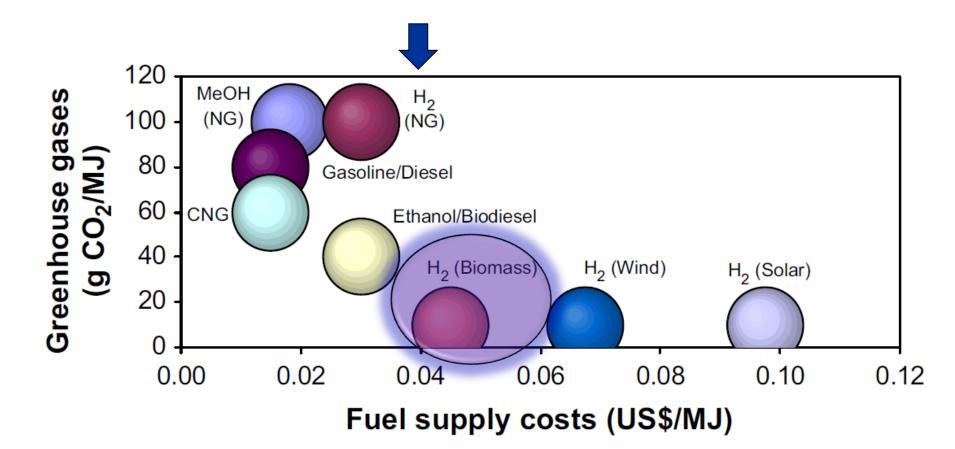
Crescimento: 10% / ano

Cortesia: Linde GmbH.

Fonte	10 ⁹ m³/ano (CNTP)	(%)
Gás Natural	240	48
Óleo Pesado	150	30
Carvão	90	18
Eletrólise	20	4
Total	500	100

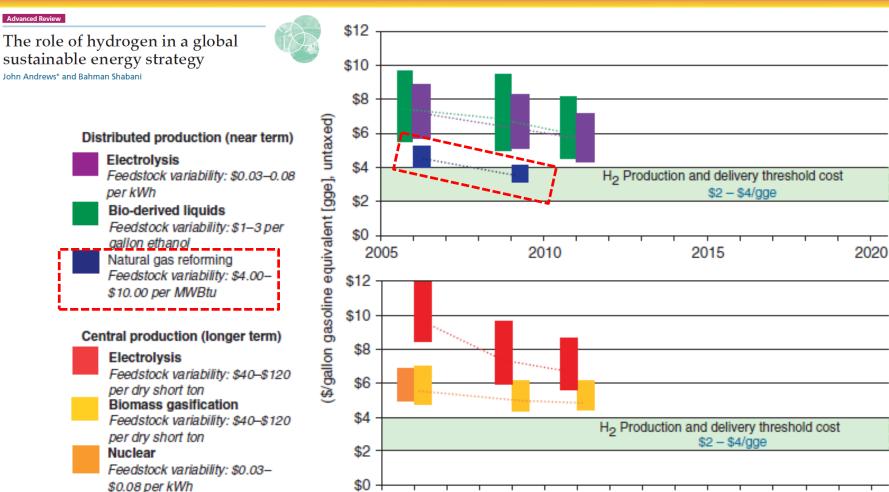

www.hytron.com.br

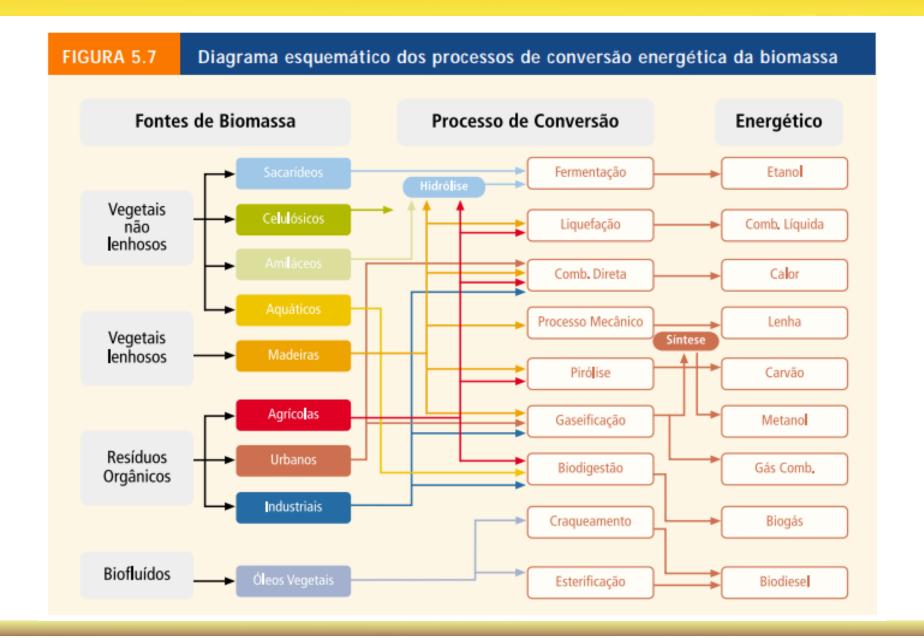
TECNOLOGIAS E ROTAS DE PRODUÇÃO DE HIDROGÊNIO


GERAÇÃO DE H2 POR DIVERSAS FONTES

CUSTOS DOS COMBUSTÍVEIS X EMISSÃO CO2

CUSTOS DO HIDROGÊNIO (2014)



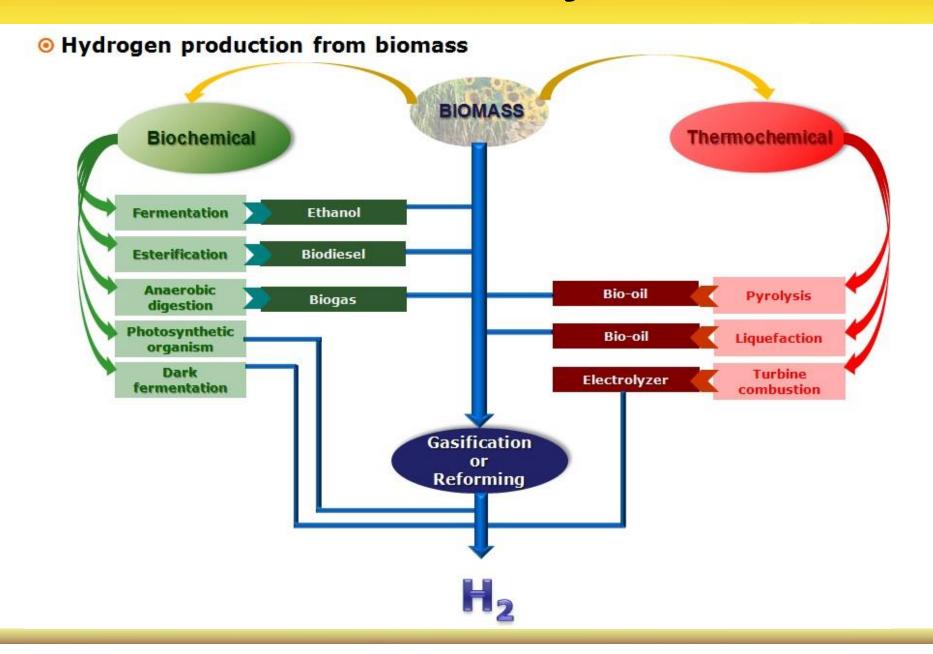


FIGURE 6 | The estimated high-volume production and delivery costs for hydrogen produced from a range of distributed and centralized renewable energy (RE), fossil fuel, and nuclear fission power sources (Ref 14, p. I–5). (Reproduced from Ref 14. With credit to the U.S. Department of Energy Hydrogen and Fuel Cells Program)

CUSTOS DO H2 X IMPACTOS AMBIENTAIS

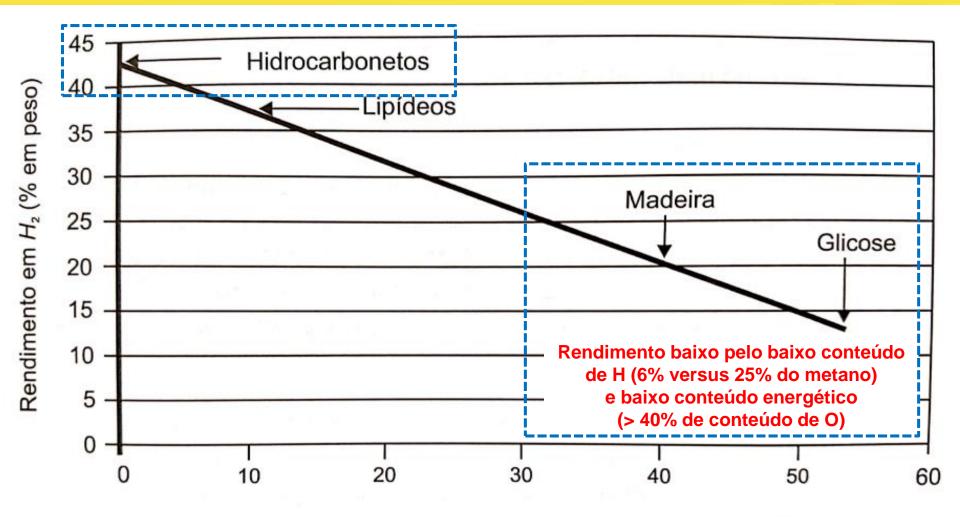
PROCESSOS DE CONVERSÃO DA BIOMASSA

PROCESSOS DE CONVERSÃO DA BIOMASSA

- COMBUSTÃO DIRETA (queima do bagaço de cana)

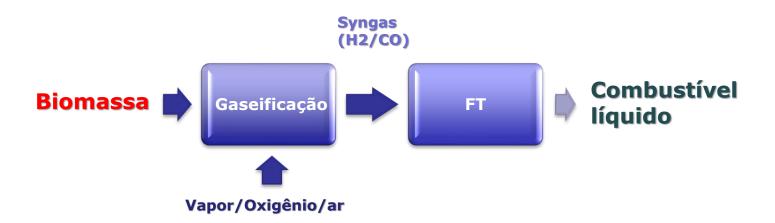


- PROCESSOS QUÍMICOS E TERMOQUÍMICOS (óleo-biodiesel / reforma-gás natural / gaseificação)

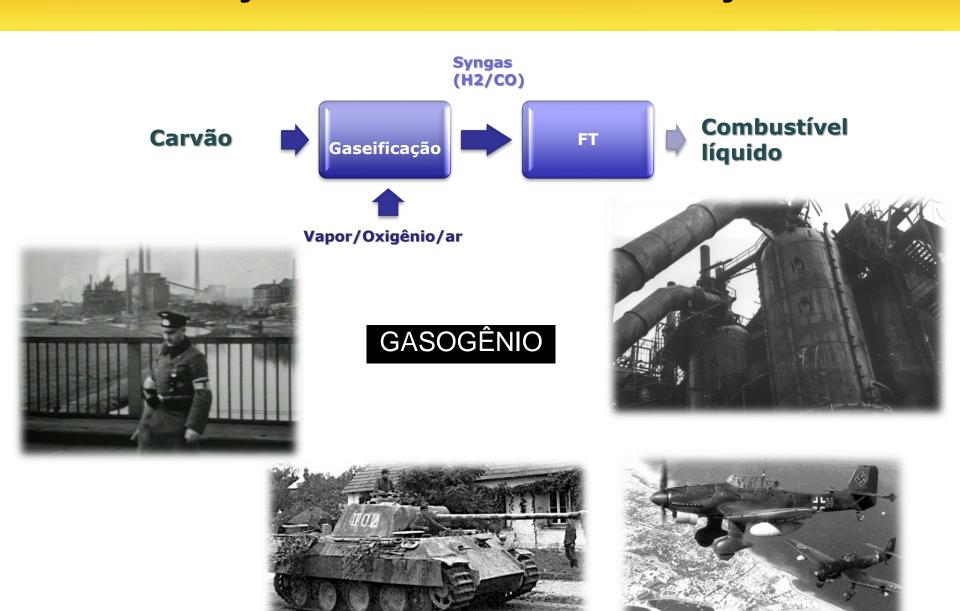

- PROCESSOS BIOLÓGICOS (biodigestão)

BIOMASSA NA PRODUÇÃO DE H2

USO DA BIOMASSA NA PRODUÇÃO DE H2


Porcentagem (em peso) de oxigênio na alimentação

Rendimento teórico em H2 em função do conteúdo de oxigênio da alimentação.



BIOMASSA NA PRODUÇÃO DE H2

Gaseificação da biomassa

GASEIFICAÇÃO DA BIOMASSA - PRODUÇÃO DE H2

GASEIFICAÇÃO DA BIOMASSA - PRODUÇÃO DE H2

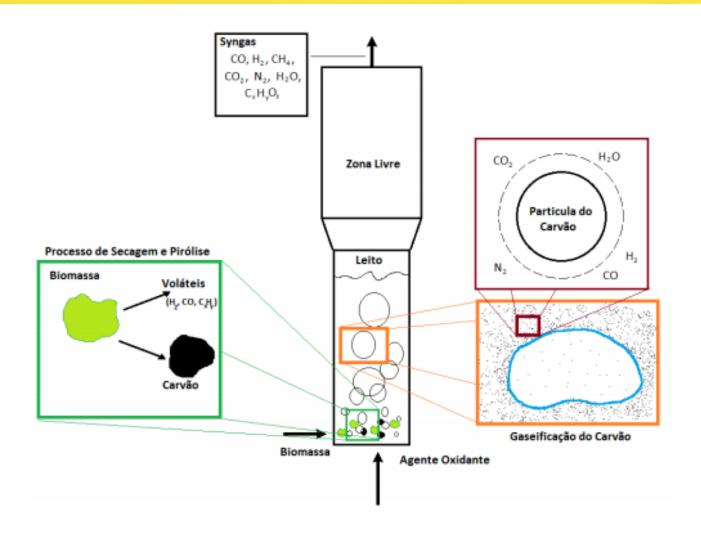
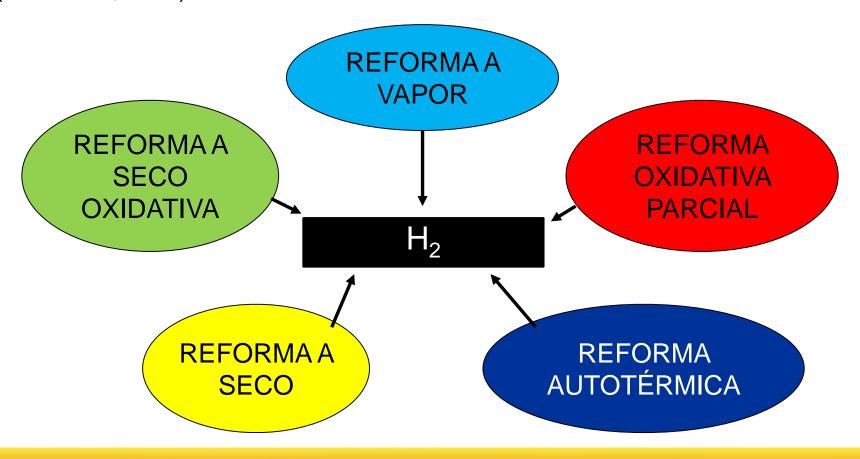


Figura 2.3 Descrição do processo de gaseificação em um leito fluidizado. Adaptada de Gómez-Barea e Leckner [18]

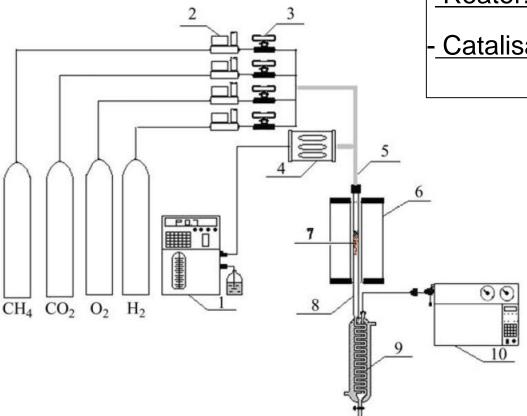
CLASSIFICAÇÃO DOS GASEIFICADORES

Tino do gossificador	Leito fixo			Leito fluidizado	
Tipo de gaseificador	Contracorrente	Cocorrente	Fluxo cruzado	Borbulhante	Circulante
Biomassa	Madeira	Madeira	Madeira	Madeira	Madeira
Limite para <i>scale up</i> (t biomassa/dia) base seca	<10	<15	<1	Na realidade não limitações para d faixa de potência viabilidade econó	scale up. A depende da
PCI (MJ/Nm³)	4 a 5 (ar)	5 (ar)	_	3,5 a 5 (ar), e 5-13 (O ₂ e vapor)	4 a 7 (ar)
Conteúdo de alcatrão no gás (mg/Nm³)	35 000	500-1 000	Alto	13 500	Baixo
Agente de gaseificação	Usualmente ar	Ar, oxigênio, vapor	Usualmente ar	Ar, oxigênio, vapor de água	
Pressão, bar	Atmosférica	Atmosférica	Atmosférica	1 a 35	1 a 19
Temperatura, °C	300-1 000	300-1 000	300-1 000	650-950	800-1 000



PROCESSOS CONVENCIONAIS - REFORMA DE HC

DEFINIÇÃO DE REFORMA


Processo endotérmico ou exotérmico de conversão catalítica, de um combustível líquido, sólido ou gasoso para um gás que pode ser utilizado como combustível (Sordi *el al*, 2006).

REATOR PARA A PRODUÇÃO DE H2 POR REFORMA A VAPOR

Reformador Convencional

Figure 1. Schematic diagram of the experiment. 1—Plunger pump, 2—Mass flow meter, 3—Valve, 4—Evaporator, 5—Heating belt, 6—Furnace, 7—Catalyst bed, 8—Quartz reactor, 9—Cold trap, 10—GC

- Reator: leito fixo ou fluidizado

<u>Catalisador:</u> pó, pastilha, monolítico, etc

REFORMA À VAPOR - VÁRIAS FONTES

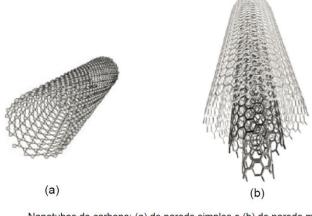
Reforma do gás natural: mais utilizada mundialmente

Table 1 - Conventional steam refo	orming (CSR) reactions [25].		
Feedstock and process	Reactions	ΔG° (KJ/mole)	ΔH° (KJ/mole)
Methane (CH ₄) reforming: CSR	$CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$	+130.5	+253.1
Methanol (CH₃OH) reforming: CSR	$CH_3OH + H_2O \leftrightarrow CO_2 + 3H_2$	+9.2	+131.8
Ethanol (C ₂ H ₅ OH) reforming: CSR	$C_2H_5OH + 3H_2O \leftrightarrow 2CO_2 + 6H_2$	+97.5	+348.5
Glycerin (C ₂ H ₈ O ₃) reforming: CSR	$C_3H_8O_3 + 3H_2O \leftrightarrow 3CO_2 + 7H_2$	+5.0	+346.0
Glucose ($C_6H_{12}O_6$) reforming: CSR	$C_6H_{12}O_6 + 6H_2O \leftrightarrow 6CO_2 + 12H_2$	-34.3	+6 <u>28.</u> 4

Reações Endotérmicas

Reforma do metano: modelo para a reforma do biogás

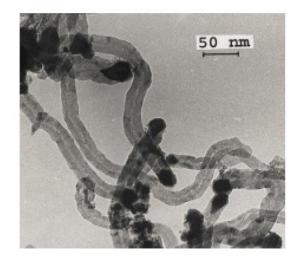
REFORMA A VAPOR DO METANO

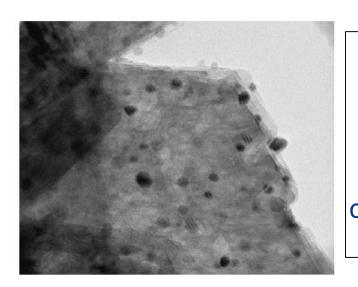

Reação endotérmica

- (1) Reação entre o metano e o vapor d'água
- (2) Reação de deslocamento gás-água (Shift)
- (3) Formação do coque

Reações	Características	Nº
	ΔH ^o 298κ = 206 KJ.mol ⁻¹	
CH ₄ + H ₂ O ← → CO + 3H ₂ Maior relação H2/CO (3:1)	ΔG°298K = 142 kJ.mol ⁻¹	(1)
CO + H ₂ O ← CO ₂ + H ₂	ΔH ^o _{298K} = - 41,2 KJ.mol ⁻¹ ΔG ^o _{298K} = -28,5 KJ.mol ⁻¹	(2)
2 CO ← CO2	ΔH ^o _{298K} = -172 KJ.mol ⁻¹ ΔG ^o _{298K} = 50,9 KJ.mol ⁻¹	(3)

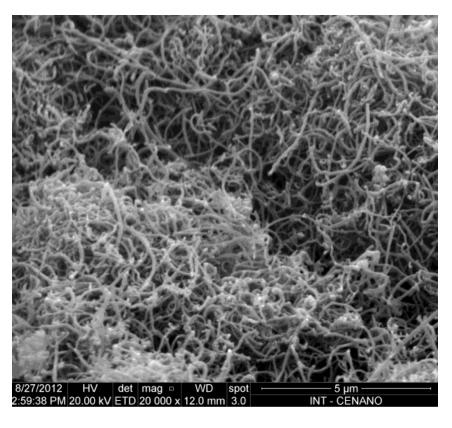
PROBLEMAS COM O CATALISADOR NA REFORMA

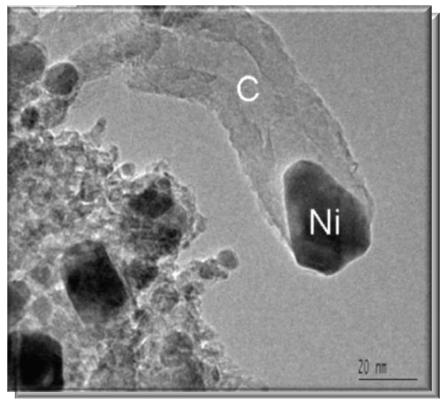



$CH_4 \leftrightarrow C + 2H_2$ $2CO \leftrightarrow C + CO_2$ $CO + H_2 \leftrightarrow C + H_2O$

Desativação:

- Depósito de C (coque)
- Envenenamento (enxofre)
- Sinterização (fase líquida)




<u>Soluções</u>

- Vapor de H₂O
- Catalisador com suportes básicos contendo Ca, Mg ou K

PROBLEMAS COM O CATALISADOR NA REFORMA

PRINCIPAIS REAÇÕES ENVOLIDAS NA REFORMA DO METANO

Table 1
Possible reactions in dry reforming of methane [13,14].

Reaction	ΔH 298 K kJ/mol	Ln (Keq) at 573 K	Ln (Keq) at 1373 K	Favored by
$CH_4 + CO_2 < = > 2CO + 2 H_2$	247	-20	13	High Temperatures
$CO_2 + H_2 < = > CO + H2O$	41	-5	2	High Temperatures
$2CH_4 + CO_2 < = > C_2H_6 + CO + H_2O$	106	-19	-5	High Temperatures
$2CH_4 + 2CO_2 < = > C2H_4 + 2CO + 2H_2O$	284	-36	0	High Temperatures
$C_2H_6 < = > C_2H_4 + H_2$	136	-14	4	High Temperatures
$CO + 2 H_2 < = > CH_3OH$	-90.6	-10	-20	Low Temperatures
$CO_2 + 3H_2 < = > CH_3OH + H_2O$	-49.1	-12	-20	Low Temperatures
$CH_4 < = > C + 2H_2$	74.9	-6	5	High Temperatures
2CO < = > C + CO2	-172.4	15	-7	Low Temperatures
$CO_2 + 2H_2 < = > C + 2H_2O$	-90	8	-5	Low Temperatures
$H_2 + CO < = > H_2O + C$	-131.3	12	-6	Low Temperatures
$CH_3OCH_3 + CO_2 < = > 3CO + 3H_2$	258.4	10	40	High Temperatures
$3H_2O + CH_3OCH_3 < = > 2CO_2 + 6H_2$	136	20	37	High Temperatures
$CH_3OCH_3 + H_2O < = > 2CO + 4H_2$	204.8	14	37	High Temperatures
$2CH_3OH < = > CH_3OCH_3 + H_2O$	-37	3	-1	Low Temperatures
$CO_2 + 4H_2 < = > CH_4 + 2H_2O$	-165	14	-10	Low Temperatures
$CO + 3H_2 < = > CH_4 + H_2O$	-206.2	14	-11	Low Temperatures

REFORMA A VAPOR DO ETANOL

Vantagens

- ✓ Líquido derivado da biomassa e portanto é uma fonte neutral de CO₂
- ✓ Pode ser produzido a partir de uma grande variedade de biomassas
- ✓ Biorefinarias baseadas na cana de açúcar
- ✓ A infraestrutura de produção e distribuição do etanol já está bem estabelecida em países como Brasil e EUA já que ele já é atualmente distribuído em misturas com gasolina

REFORMA A VAPOR DO ETANOL

- Desativação do catalisador durante as reações de conversão do etanol
- ✓ Principais reações que contribuem para a formação de carbono

Ethanol dehydration to ethylene, followed by polymerization to coke

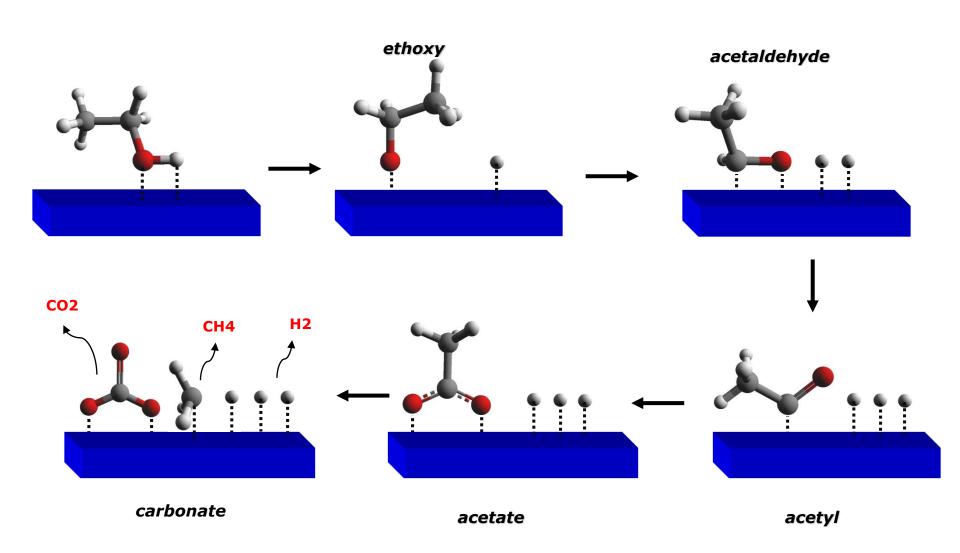
$$C_2H_5OH \rightarrow C_2H_4 + H_2O$$

 $C_2H_4 \rightarrow coke$

The Boudouard reaction

$$2CO \rightarrow CO_2 + C$$

The reverse of carbon gasification


$$CO + H_2 \rightarrow H_2O + C$$

Methane decomposition

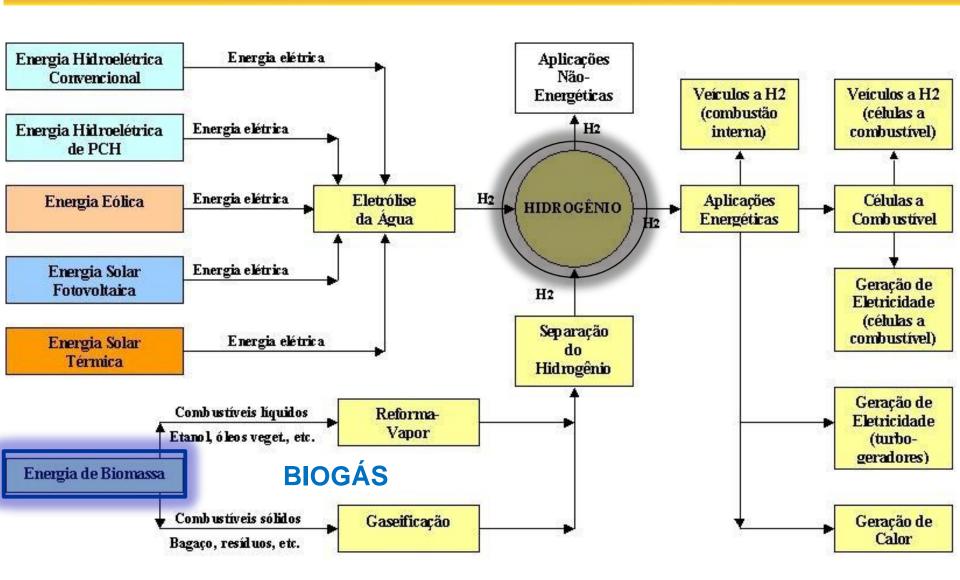
$$CH_4 \rightarrow C + 2H_2$$

REFORMA A VAPOR DO ETANOL

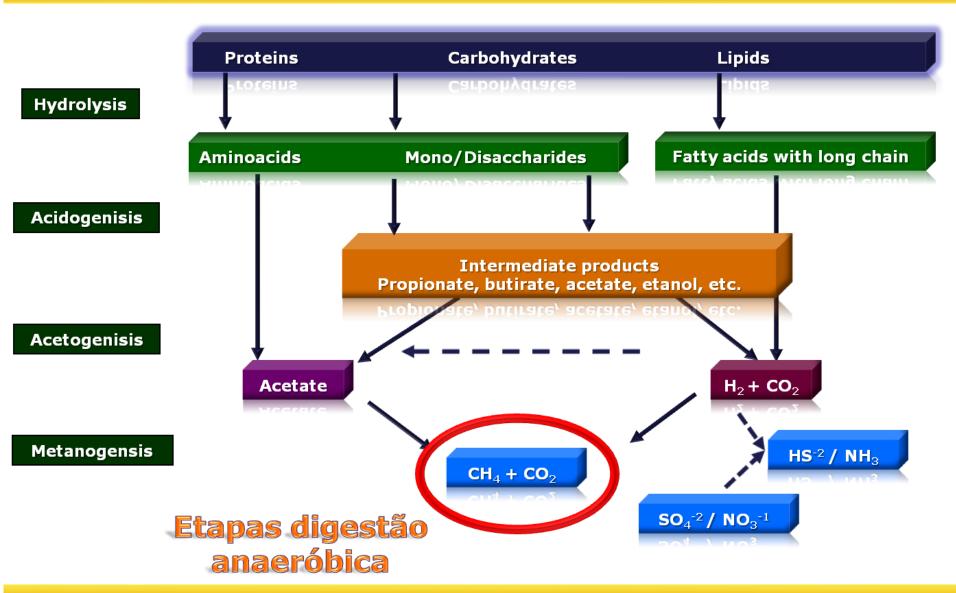
PRODUÇÃO DE HIDROGÊNIO - REFORMA

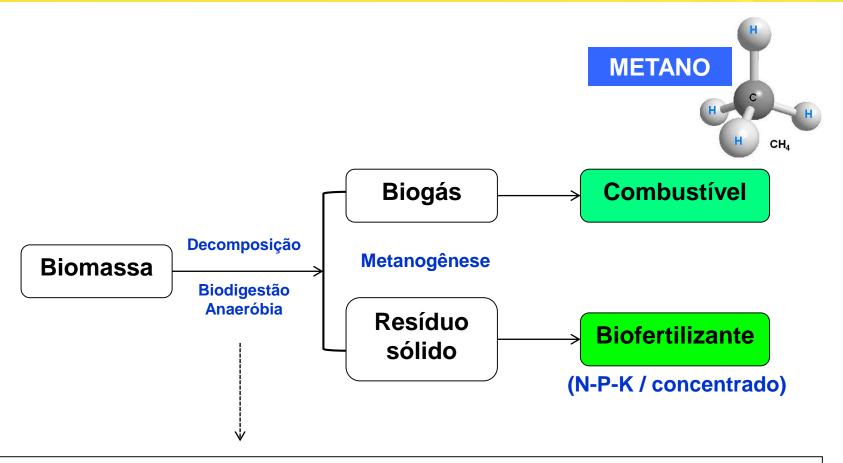
Tecnologias para produção de hidrogênio a partir do etanol

1 a 20 kg H2/h


1 kg de H2 equivale a aproximadamente 11 m3 H2

Produção: até 220 m3 H2/h


GERAÇÃO DE H2 VIA FONTES RENOVÁVEIS



FERMENTAÇÃO ANAERÓBIA

Biodigestão, Biogás e Biofertilizante

<u>Biodigestão anaeróbia</u>: diversos grupos de <u>microrganismos</u> trabalham interativamente na conversão da matéria orgânica na <u>ausência de ar</u>.

BIODIGESTOR E BIODIGESTÃO

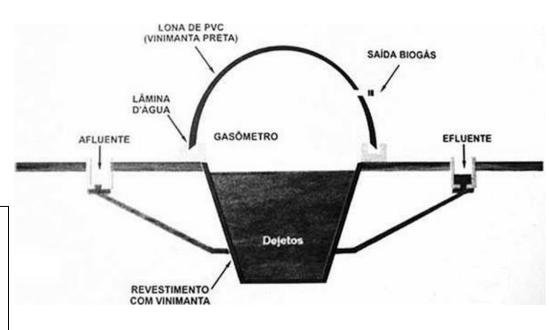
BIODIGESTORES NATURAIS

Dependendo da alimentação e do tamanho do animal, uma vaca adulta poderá produzir até 1000 L de gases por dia.

ATA desenvolveu um dispositivo experimental, que canaliza os gases diretamente do rúmen para um reservatório. É composto por um sistema de válvulas, bombas e tubos ligados a uma mochila de plástico, que está presa no dorso do animal. O tubo de ligação ao rúmen implicou uma incisão de apenas dois milímetros, com anestesia, e a mochila não pesa mais de 500 gramas.

BIODIGESTOR E BIODIGESTÃO

- Sistema de Digestão Contínuo
- ✓ Biodigestor: Modelo Canadense


(lagoa coberta / mais caro / mais usado no Brasil)

Flanges de captação do biogás

- Maior área de exposição ao sol.
- Cúpula de PVC (maleável).
- Produção de biogás em maior escala.

FATORES QUE INFLUENCIAM NA PRODUÇÃO DE BIOGÁS

- IMPERMEABILIDADE AO AR
- NATUREZA DO SUBSTRATO
- TEMPERATURA
- pH
- TEMPO DE RETENÇÃO HIDRÁULICA

PRODUÇÃO DE BIOGÁS - ESTIMATIVA

Animal (peso vivo)	Esterco (kg.animal ⁻¹ .dia ⁻¹)	Biogás (m³.kg _{esterco} -1)	Biogás (m³.kg ⁻¹ SV)	Biogás (m³.animal⁻¹.dia⁻¹)
Suínos (90 kg)	2,3 – 2,8	0,079	0,37 – 0,50	0,24
Bovinos (500 kg)	10 - 15	0,038	0,094 – 0,31	0,36
Aves (2,5 kg)	0,12 – 0,18	0,050	0,31 – 0,62	0,014

SV: Sólidos voláteis

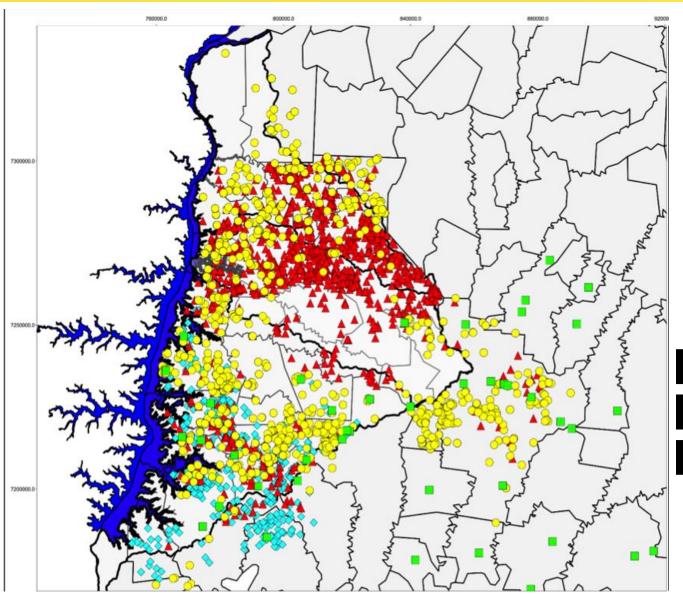
COMPOSIÇÃO DO BIOGÁS - PERFIL

1) Biogás *in natura*: 55 - 70% CH₄ (metano) 30 - 45% CO₂ 500-4000 ppm H₂S (depende do dejeto)

- 2) Biogás parcialmente tratado: remoção de H₂S
- 3) Biogás enriquecido em **biometano**: > 96,5% CH_4 3% CO_2 < 10 ppm H_2S

Composição semelhante a do gás natural (≈ 90% CH₄)

ENERGIA DO BIOGÁS - EQUIVALÊNCIA


Combustível	Quantidade equivalente a 1Nm³ de biogás
Carvão Vegetal	0,8 kg
Lenha	1,5 kg
Óleo Diesel	0,551
Querosene	0,581
Gasolina Amarela	0,611
GLP (Gás Liquefeito de Petróleo)	0,451
kWh	1,43
Álcool Carburante	0,801
Carvão Mineral	0,74 kg

Base: biogás com 65% de metano

Chuveiro a gás: 1,0 Nm³ / banho (15 min)

POTENCIAL DO BIOGÁS NA REGIÃO OESTE - PR

- Produção dispersa
- Arranjos locais (Condomínios)

Amarelo: aves

Vermelho: suínos

Azul: bovinos

ROTAS ENERGÉTICAS - BIOGÁS

IMPUREZAS E PURIFICAÇÃO DO BIOGÁS

Impureza	Processo	Técnica		
		Silica gel Peneira molecular		
	Adsorção			
	-	Alumina		
Água		Etileno glicol		
	Absorção	(temperatura -6,7°C)		
		Solexol		
	Refrigeração	Resfriamento 2°C		
	Adsorção	Çarvão Ativado		
		Óleo leve		
	Absorção	Etileno Glicol		
Hidrocarbonetos	Absorção	Selexol		
		(temperatura entre -6,7°C e -33,9°C)		
	Combinação	Refrigeração com Etileno glicol e adsorção		
	Combinação	em carvão ativado		
		Solventes orgânicos Selexol Flúor		
		Rectisol		
	Absorção	Soluções de sais alcalinos		
	710301ya0	Potássio quente e potássio quente inibido		
F — — 1		Alcanolaminas		
CO₂ e H₂S		Mono, di-tri-etanol amina		
		Deglicolamina		
		Ucarsol-CR		
	Adoere = -	Peneiras moleculares		
	Adsorção	Carvão ativado		
		Separação por membranas		

FONTE: Adptado de ALVES (2000)

REFORMA A SECO

Reação endotérmica

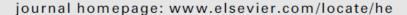
(6) - Reação entre metano e CO₂

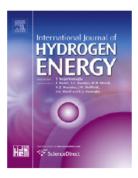
Processo Fischer-Tropsch (gás de síntese)

Maior tendência de formação de coque Uso de gases de efeito estufa

	ΔH ^o 298κ = 247,5 KJ.mol ⁻¹	
CH ₄ + CO ₂ ← → 2CO + 2H ₂	ΔG ^o _{298K} = 170.78 KJ/mol ⁻¹	(6)
Menor razão H2/CO (1:1)		

TRABALHOS COM HIDROGÊNIO - UFPR / PTI-ITAIPU




INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 38 (2013) 5215-5225

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Review

Overview of hydrogen production technologies from biogas and the applications in fuel cells

Helton José Alves ^{a,*}, Cícero Bley Junior ^c, Rafael Rick Niklevicz ^c, Elisandro Pires Frigo ^b, Michelle Sato Frigo ^b, Carlos Henrique Coimbra-Araújo ^a

^a Biofuels Technology Course, Federal University of Paraná (UFPR-Campus Palotina), R. Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil

^b Agronomy Course, Federal University of Paraná (UFPR-Campus Palotina), R. Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil ^c International Renewable Energy Center-Emphasis on Biogas (CIER-Biogas), ITAIPU Binacional-Parque Tecnológico Itaipu (PTI), Av. Tancredo Neves, 6731, 85867-900 Foz do Iguaçu, PR, Brazil

PARÂMETROS - PROCESSOS DE REFORMA DO BIOGÁS

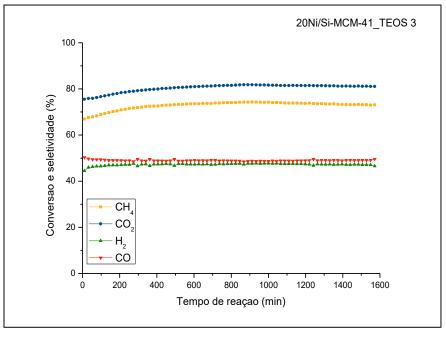
Process Reactor Temperature (°C) Catalyst H₂/CO Conversion of CH₄ (°C) SR Fixed-bed 600 Ni-Ce₀, 6Zr₀, 2O₂ 3.4 70 Fixed-bed 650 NiMg₁, 7₄Al₁, 6O₂₀ 8 3.7 98 Fixed-bed 700 Ni/Al₂O₃ 2.7 90 Fixed-bed 715 Ru/Al₂O₃ 2.7 90 Fluidized-bed 850 Ni/Al₂O₃ 2.1 98 Fixed-bed 750 Ni/Al₂O₃ 2.5 95 Fixed-bed 750 Ni/Al₂O₃ 2.0 85 Fixed-bed 750 Ni/Al₂O₃ 2.0 85 Fixed-bed 800 Pt/CeO₂ 2.0 85 Fixed-bed 800 Ni/Al₂O₃ 2.0 87 Fixed-bed 700 Ni/MgAl₂O₄ 3.2 92 Fixed-bed 700 Ni/MgAl₂O₄ 3.2 92 Fixed-bed 700 Rh/Al₂O₃ 3.5 95 Fixed-bed 700	cesses.	tional reforming process	in conven	duction using methane or biogas	f studies on H ₂ pro	A summary o	Table 3 -
Fixed-bed 650 NiMg _{17,4} Al _{1,6} O _{20.8} 3.7 98 Fixed-bed 700 Ni/Al ₂ O ₃ a 85 Fixed-bed 715 Ru/Al ₂ O ₃ 2.7 90 Fluidized-bed 850 Ni/Al ₂ O ₃ 2.1 98 Fixed-bed 750 Ni/CaO−Al ₂ O ₃ 2.5 95 Fixed-bed 750 Ni/CaO−Al ₂ O ₃ 2.0 85 Eluidized-bed 750 Ni/Al ₂ O ₃ 2.0 85 Eluidized-bed 850 Ni/Al ₂ O ₃ 2.0 85 Fixed-bed 850 Ni/MgO 2.0 85 Fixed-bed 850 Ni/MgO 2.0 87 Fixed-bed 850 Ni/MgO 2.0 87 Fixed-bed 850 Ni/MgO 2.0 95 ATR Fixed-bed 800 Pt/CeO ₂ 2.0 100 Fixed-bed 800 NiCoMgCeO ₃ /ZrO ₂ −HfO ₂ 2.0 95 ATR Fixed-bed 700 Ni/MgAl ₂ O ₃ 2.0 100 Fixed-bed 700 Rh/Al ₂ O ₃ 3.2 92 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/Cu ₂ Zr ₁₀ Ce ₂₀ Al ₆₅ O ₈ 3.9 100 Fixed-bed 750 Ni/Crodierite 2.6 90 Fixed-bed 850 Ni/ShSa-15 1.4 92 Fixed-bed 750 Ni/ShSa-15 1.4 92 Fixed-bed 750 Ni/Nio−MgO 1.2 75 DR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 750 Ni/CeZrO ₂ −MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Ni/CeZrO ₂ −MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Ni/CeZrO ₂ −MgAl ₂ O ₄ 1.2 85	%) Reference	Conversion of CH ₄ (%)	H ₂ /CO	Catalyst	Temperature (°C)	Reactor	Process
Fixed-bed 700 Ni/Al ₂ O ₃ a 85 Fixed-bed 715 Ru/Al ₂ O ₃ 2.7 90 Fluidized-bed 850 Ni/Al ₂ O ₃ 2.1 98 Fixed-bed 750 Ni/CaO-Al ₂ O ₃ 2.5 95 Fixed-bed 750 Ni/Al ₂ O ₃ 2.0 85 Fluidized-hed 750 Ni/Al ₂ O ₃ 2.0 85 Fluidized-hed 750 Ni/Al ₂ O ₃ 2.0 85 Fixed-bed 800 Pt/CeO ₂ 2.0 85 Fixed-bed 850 NiO/MgO 2.0 87 Fixed-bed 800 Ni/CoMgOeO_JZrO ₂ -HfO ₂ 2.0 95 ATR Fixed-bed 800 Ni/CoMgCeO_JZrO ₂ -HfO ₂ 2.0 95 ATR Fixed-bed 700 Rh/Al ₂ O ₃ 3.2 92 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/corde-pal ₂ O ₈ 3.9 100 Fixed-be	[41]	70	3.4	Ni-Ce _{0.8} Zr _{0.2} O ₂	600	Fixed-bed	SR
Fixed-bed 715 Ru/Al ₂ O ₃ 2.7 90 Fluidized-bed 850 Ni/Al ₂ O ₃ 2.1 98 Fixed-bed 750 Ni/Al ₂ O ₃ 2.5 95 Fixed-bed 750 Ni/Al ₂ O ₃ 2.0 85 Eluidized-hed 750 Ni/Al ₂ O ₃ 2.0 85 Fixed-bed 800 Pt/CeO ₂ 2.0 85 Fixed-bed 850 NiO/MgO 2.0 87 Fixed-bed 700 Ni/Al ₂ O ₃ 2.0 100 Fixed-bed 800 NiCoMgCeO ₂ /ZrO ₂ -HfO ₂ 2.0 95 ATR Fixed-bed 700 Ni/MgAl ₂ O ₃ 2.0 100 Fixed-bed 800 Pt/ZrO ₂ /Al ₂ O ₃ 2.0 100 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/Cu ₂ Zr ₁ Ce ₂ oAl ₆ oO ₈ 3.9 100 Fixed-bed 750 Ni/Isalating (Si,Mg,Al) (monolithic) 2.8 95 F	[43]	98	3.7	$NiMg_{17.4}Al_{1.6}O_{20.8}$	650	Fixed-bed	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[39]	85	a	Ni/Al ₂ O ₃	700	Fixed-bed	
Fixed-bed 750 Ni/CaO-Al ₂ O ₃ 2.5 95 Fixed-bed 750 Ni/Al ₂ O ₃ 2.0 85 Fluidized_bed 750 Ni/Al ₂ O ₂ 2.2 96 POR Fixed-bed 800 Pt/CeO ₂ 2.0 85 Fixed-bed 850 NiO/MgO 2.0 87 Fixed-bed 700 Ni/Al ₂ O ₃ 2.0 100 Fixed-bed 800 NiCoMgCeO ₂ /ZrO ₂ -HfO ₂ 2.0 95 ATR Fixed-bed 700 Ni/MgAl ₂ O ₃ 2.0 100 Fixed-bed 800 Pt/ZrO ₂ /Al ₂ O ₃ 2.0 100 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/Cu ₂ Zr ₁₀ Ce ₂ Al ₆ SO ₈ 3.9 100 Fixed-bed 750 Ni/cordierite 2.6 90 Fixed-bed 850 Ni/sBA-15 1.4 92 Fixed-bed 750 Ni/NiNiO-MgO 1.2 75 DR <td>[105]</td> <td>90</td> <td>2.7</td> <td>Ru/Al₂O₃</td> <td>715</td> <td>Fixed-bed</td> <td></td>	[105]	90	2.7	Ru/Al ₂ O ₃	715	Fixed-bed	
Fixed-bed 750 Ni/Al ₂ O ₃ 2.0 85 Fluidized-bed 750 Ni/Al ₂ O ₃ 2.2 96 POR Fixed-bed 800 Pt/CeO ₂ 2.0 85 Fixed-bed 850 NiO/MgO 2.0 87 Fixed-bed 700 Ni/Al ₂ O ₃ 2.0 100 Fixed-bed 800 NiCoMgCeO ₃ /ZrO ₂ -HfO ₂ 2.0 95 ATR Fixed-bed 700 Ni/CoMgAl ₂ O ₄ 3.2 92 Fixed-bed 800 Pt/ZrO ₂ /Al ₂ O ₃ 2.0 100 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/Cud ₂ Zr ₁₀ Ce ₂₀ Al ₆₅ O ₈ 3.9 100 Fixed-bed 750 Ni/cordierite 2.6 90 Fixed-bed 850 Ni/insulating (Si,Mg,Al) (monolithic) 2.8 95 Fixed-bed 750 Ni/SBA-15 1.4 92 Fixed-bed 750 Ni/Co2-Al ₂ O ₃ 1.3 90 <td>[2]</td> <td>98</td> <td>2.1</td> <td>Ni/Al₂O₃</td> <td>850</td> <td>Fluidized-bed</td> <td></td>	[2]	98	2.1	Ni/Al ₂ O ₃	850	Fluidized-bed	
Por Fixed-bed Soo Pt/CeO2 2.0 85	[3]	95	2.5	Ni/CaO-Al ₂ O ₃	750	Fixed-bed	
POR Fixed-bed 800 Pt/CeO2 2.0 85 Fixed-bed 850 NiO/MgO 2.0 87 Fixed-bed 700 Ni/Al2O3 2.0 100 Fixed-bed 800 NiCoMgCeO $\sqrt{2}$ TO2-HfO2 2.0 95 ATR Fixed-bed 700 Ni/MgAl2O4 3.2 92 Fixed-bed 800 Pt/ZrO2/Al2O3 2.0 100 Fixed-bed 700 Rh/Al2O3 3.5 95 Fixed-bed 750 Ni/CusZr10Ce20Al65O8 3.9 100 Fixed-bed 750 Ni/cordierite 2.6 90 Fixed-bed 850 Ni/insulating (Si,Mg,Al) (monolithic) 2.8 95 Fixed-bed 750 Ni/NiO-MgO 1.2 75 DR Fixed-bed 860 Ni/CeO2-Al2O3 1.3 90 Fixed-bed 750 Rh-NiLa/γ-Al2O3 0.9 70 Fixed-bed 750 Rh-NiLa/γ-Al2O3 0.9 70	[106]	85	2.0	Ni/Al ₂ O ₃	750	Fixed-bed	
Fixed-bed 850 NiO/MgO 2.0 87 Fixed-bed 700 Ni/Al ₂ O ₃ 2.0 100 Fixed-bed 800 NiCoMgCeO _x /ZrO ₂ —HfO ₂ 2.0 95 ATR Fixed-bed 700 Ni/MgAl ₂ O ₄ 3.2 92 Fixed-bed 800 Pt/ZrO ₂ /Al ₂ O ₃ 2.0 100 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/Cu ₅ Zr ₁₀ Ce ₂₀ Al ₆₅ O ₈ 3.9 100 Fixed-bed 750 Ni/cordierite 2.6 90 Fixed-bed 850 Ni/insulating (Si,Mg,Al) (monolithic) 2.8 95 Fixed-bed 800 Ni/SBA-15 1.4 92 Fixed-bed 750 Ni/NiO-MgO 1.2 75 DR Fixed-bed 860 Ni/CeO ₂ -Al ₂ O ₃ 1.3 90 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.0 86	[106]	<u> </u>	2.2	Ni/Al ₂ O ₂	750	Fluidized-bed	
Fixed-bed 700 Ni/Al ₂ O ₃ 2.0 100 Fixed-bed 800 NiCoMgCeO _x /ZrO ₂ —HfO ₂ 2.0 95 ATR Fixed-bed 700 Ni/MgAl ₂ O ₄ 3.2 92 Fixed-bed 800 Pt/ZrO ₂ /Al ₂ O ₃ 2.0 100 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/Cu ₅ Zr ₁₀ Ce ₂₀ Al ₆₅ O ₈ 3.9 100 Fixed-bed 750 Ni/cordierite 2.6 90 Fixed-bed 850 Ni/insulating (Si,Mg,Al) (monolithic) 2.8 95 Fixed-bed 800 Ni/SBA-15 1.4 92 Fixed-bed 750 Ni/NiO-MgO 1.2 75 DR Fixed-bed 860 Ni/CeO ₂ -Al ₂ O ₃ 1.3 90 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 700 La/hydrotalcite 0.7 67 Fixed-bed 700 Ni/CeZrO ₂ -MgAl ₂ O ₃ 1.0	[44]	85	2.0	Pt/CeO ₂	800	Fixed-bed	POR
Fixed-bed 800 NiCoMgCeO _x /ZrO ₂ -HfO ₂ 2.0 95 ATR Fixed-bed 700 Ni/MgAl ₂ O ₄ 3.2 92 Fixed-bed 800 Pt/ZrO ₂ /Al ₂ O ₃ 2.0 100 Fixed-bed 700 Rh/Al ₂ O ₃ 3.5 95 Fixed-bed 750 Ni/Cu ₅ Zr ₁₀ Ce ₂₀ Al ₆₅ O ₈ 3.9 100 Fixed-bed 750 Ni/cordierite 2.6 90 Fixed-bed 850 Ni/insulating (Si,Mg,Al) (monolithic) 2.8 95 Fixed-bed 800 Ni/SBA-15 1.4 92 Fixed-bed 750 Ni/NiO-MgO 1.2 75 DR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 700 La/hydrotalcite 0.7 67 Fixed-bed 700 Ni/CeZrO ₂ -MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.0 86	[45]	87	2.0	NiO/MgO	850	Fixed-bed	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[46]	100	2.0	Ni/Al ₂ O ₃	700	Fixed-bed	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[48]	95	2.0	NiCoMgCeO _x /ZrO ₂ -HfO ₂	800	Fixed-bed	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[52]	92	3.2	Ni/MgAl ₂ O ₄	700	Fixed-bed	ATR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[53]	100	2.0	Pt/ZrO ₂ /Al ₂ O ₃	800	Fixed-bed	
Fixed-bed 750 Ni/cordierite 2.6 90 Fixed-bed 850 Ni/insulating (Si,Mg,Al) (monolithic) 2.8 95 Fixed-bed 800 Ni/SBA-15 1.4 92 Fixed-bed 750 Ni/NiO-MgO 1.2 75 DR Fixed-bed 860 Ni/CeO ₂ -Al ₂ O ₃ 1.3 90 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 700 La/hydrotalcite 0.7 67 Fixed-bed 700 Ni/CeZrO ₂ -MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.0 86	[55]	95	3.5	Rh/Al ₂ O ₃	700	Fixed-bed	
Fixed-bed 850 Ni/insulating (Si,Mg,Al) (monolithic) 2.8 95 Fixed-bed 800 Ni/SBA-15 1.4 92 Fixed-bed 750 Ni/NiO-MgO 1.2 75 DR Fixed-bed 860 Ni/CeO ₂ -Al ₂ O ₃ 1.3 90 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 700 La/hydrotalcite 0.7 67 Fixed-bed 700 Ni/CeZrO ₂ -MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.0 86	[56]	100	3.9	Ni/Cu ₅ Zr ₁₀ Ce ₂₀ Al ₆₅ O ₈	750	Fixed-bed	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[74], ^b	90	2.6	Ni/cordierite	750	Fixed-bed	
Fixed-bed 800 Ni/SBA-15 1.4 92 Fixed-bed 750 Ni/NiO-MgO 1.2 75 DR Fixed-bed 860 Ni/CeO ₂ -Al ₂ O ₃ 1.3 90 Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 0.9 70 Fixed-bed 700 La/hydrotalcite 0.7 67 Fixed-bed 700 Ni/CeZrO ₂ -MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.0 86	[75], ^b	95	2.8	Ni/insulating (Si,Mg,Al) (monolithic)	850	Fixed-bed	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[31]	92	1.4		800	Fixed-bed	
Fixed-bed 750 Rh-NiLa/γ-Al $_2$ O $_3$ 0.9 70 Fixed-bed 700 La/hydrotalcite 0.7 67 Fixed-bed 700 Ni/CeZrO $_2$ -MgAl $_2$ O $_4$ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al $_2$ O $_3$ 1.0 86	[111]	75	1.2	Ni/NiO-MgO	750	Fixed-bed	
Fixed-bed 700 La/hydrotalcite 0.7 67 Fixed-bed 700 Ni/CeZrO ₂ -MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.0 86	[60]	90	1.3	Ni/CeO ₂ —Al ₂ O ₃	860	Fixed-bed	DR
Fixed-bed 700 Ni/CeZrO ₂ -MgAl ₂ O ₄ 1.2 85 DOR Fixed-bed 750 Rh-NiLa/γ-Al ₂ O ₃ 1.0 86	[92]	70	0.9	Rh-NiLa/γ-Al ₂ O ₃	750	Fixed-bed	
DOR Fixed-bed 750 Rh-NiLa/ γ -Al ₂ O ₃ 1.0 86	[62]	67	0.7	La/hydrotalcite	700	Fixed-bed	
	[63]	85	1.2	Ni/CeZrO ₂ -MgAl ₂ O ₄	700	Fixed-bed	
Fluidized had 000 Pt Ph/Co 7rO Al O	[92]	86	1.0	Rh-NiLa/γ-Al ₂ O ₃	750	Fixed-bed	DOR
Finding Eq. (500) Ft-Kft/Ge $-$ ZfO ₂ $-$ Al ₂ O ₃ 1.0 100	[1]	100	1.0	Pt-Rh/Ce-ZrO ₂ -Al ₂ O ₃	900	Fluidized-bed	
Fixed-bed 850 NdCoO ₃ perovskite 1.7 95	[66]	95	1.7	NdCoO₃ perovskite	850	Fixed-bed	
Fluidized-bed 750 5Ni/5ZrO ₂ —SiO ₂ 1.9 77	[47]	77	1.9	5Ni/5ZrO ₂ -SiO ₂	750	Fluidized-bed	

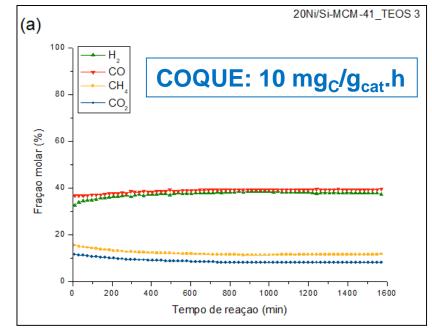
REFORMA PARA A PRODUÇÃO DE H2

Catalisadores Heterogêneos

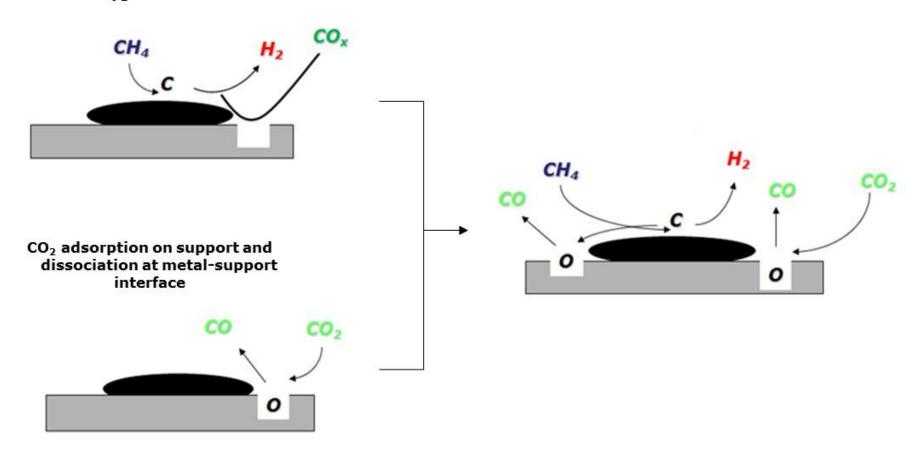
Ni/Al₂O₃ Ni/Si-MCM-41

CATALISADORES NA REFORMA A SECO DO METANO





Micrografia eletrônica de transmissão para o catalisador **20Ni/Si-MCM-41**



MECANISMO - REFORMA A SECO DO METANO

Methane decomposition on Ni particles generating oxygen vacancies

MECANISMO - REFORMA A SECO DO METANO

Renewable and Sustainable Energy Reviews 82 (2018) 2570-2585

Contents lists available at ScienceDirect

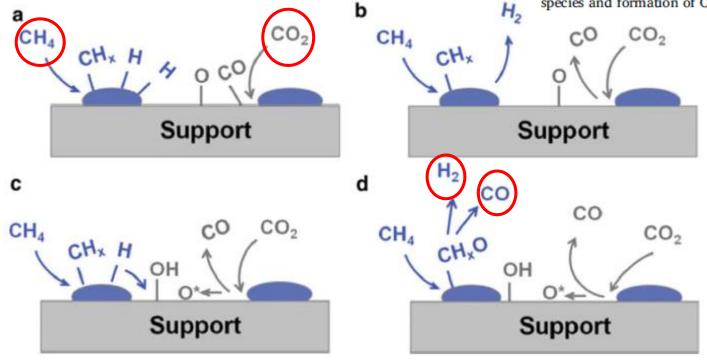
Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Catalyst design for dry reforming of methane: Analysis review

Nicolas Abdel Karim Aramouni^a, Jad G. Touma^b, Belal Abu Tarboush^a, Joseph Zeaiter^{a,*}, Mohammad N. Ahmad^a

a Department of Chemical and Petroleum Engineering, American University of Beirut, Lebanon

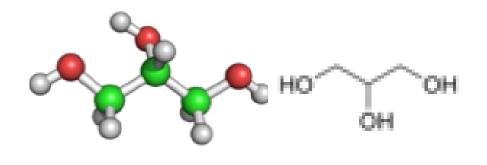

ha, Joseph Zeaitera, interface respectively. (b) Fast desorption of CO and hydrogen. (c)

Formation of surface hydroxyls and oxygen spillover. (d) Surface
hydroxyls and oxygen species oxidize hydrogen depleted S-CH_x

species and formation of CO and H₂.

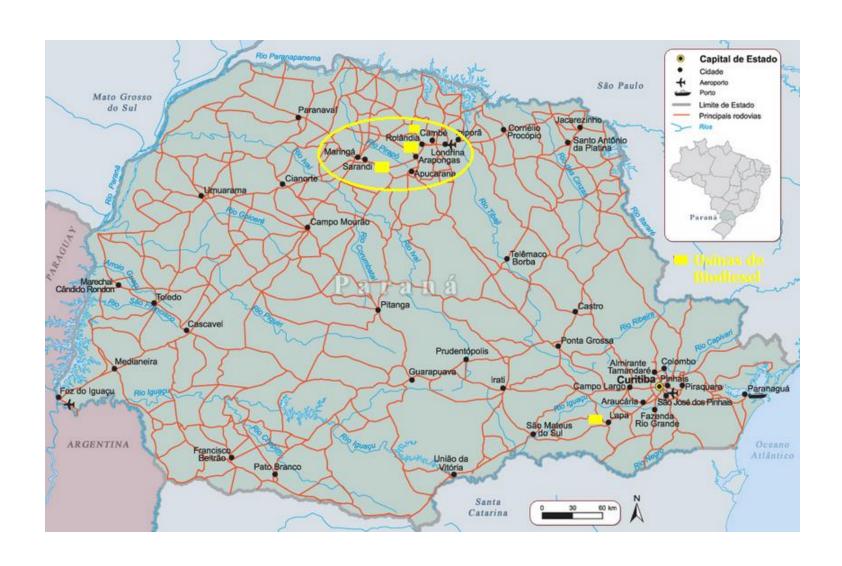
Fig. 1. Reaction steps for the dry reforming of methane [25]: (a)

Dissociative adsorption of CO2 on the metal and metal-support

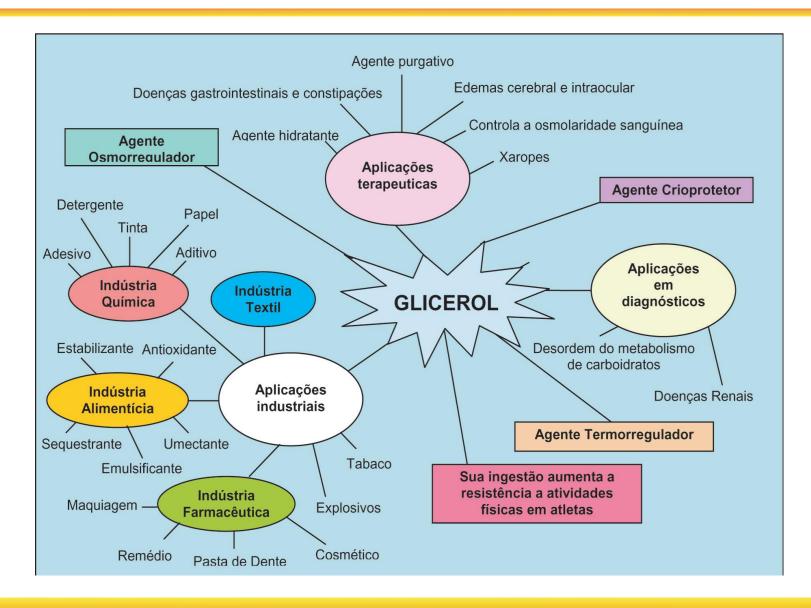

DEMAIS PROCESSOS DE REFORMA PARA A PRODUÇÃO DE HIDROGÊNIO

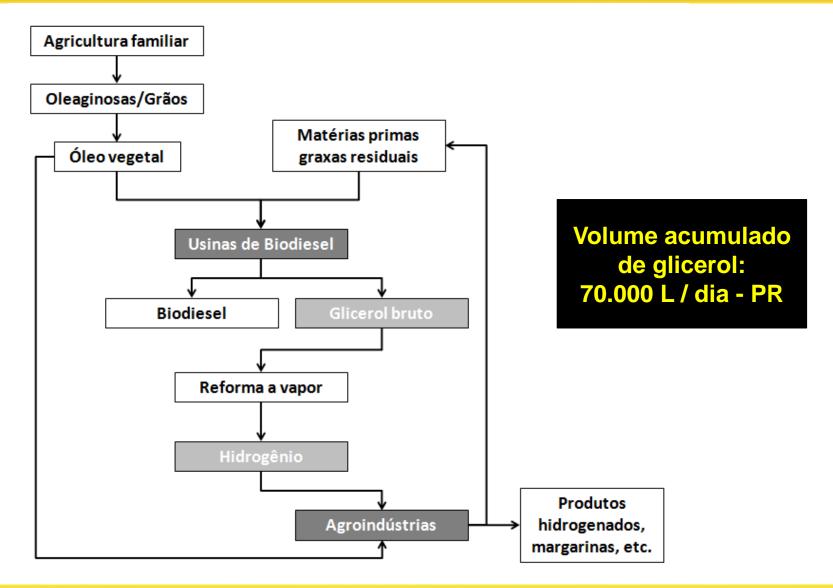
REFORMADOR PARA A PRODUÇÃO DE H2

Reforma do Glicerol


PROPRIEDADES	VALORES
Fórmula Química	C3H8O
Massa Molecular	92,09 g/mol
Densidade (20 °C)	1,261 g/cm3
Viscosidade (20 °C)	1,5 Pa.s
Ponto de fusão	18° C
Ponto de ebulição (1atm)	290 °C

EQ.	EQUAÇÃO	ΔH ⁰ 298	TIPO DE REAÇÃO
		(kJ/mol)	
1	$C_3H_8O_3 + 3H_2O \leftrightarrow 3CO_2 + 7H_2$	+ 128	Global de reforma a vapor ou reforma da fase líquida
2	$C_3H_8O_3 + O_2 \leftrightarrow CO + 2 CO_2 + 4 H_2$	-314,76	Oxidação do glicerol
3	$C_3H_8O_3 + 1.5 O_2 \leftrightarrow 3 CO_2 + 4 H_2$	- 598	Oxidação do glicerol
4	$C_3H_8O_3 + 3.5 O_2 \leftrightarrow 3 CO_2 + 4 H_2O$	-1564,93	Oxidação do glicerol
5	$C_3H_8O_3 \leftrightarrow 4H_{2(g)} + 3 CO_{(g)}$	+250	Decomposição do Glicerol


USINAS DE BIODIESEL DO PR - GLICEROL


USOS DO GLICEROL

PRODUÇÃO E USO DE H2 NA AGROINDÚSTRIA

REFORMA OXIDATIVA

Reações exotérmicas

- (4) Reação parcial: entre metano e oxigênio
- (5) Reação completa: entre metano e oxigênio

Seguido de reações paralelas...

Formação de pontos quentes

Reações	Características	Nº
	ΔH°298κ = -35,5 KJ.mol ⁻¹	
		(4)
CH4 + ½O2 → CO + 2H2	ΔG°298:κ = -86,5 KJ.mol ⁻¹	(4)
Relação H2/CO (2:1)	,	
	ΔH°298K = -801,7 KJ.mol-1	
		(5)
CH4 + 2O2 → CO2 + 2H2O	$\Delta G^{\circ}_{298K} = -801KJ.mol^{-1}$	(3)

REFORMA AUTOTÉRMICA

Reações exotérmicas e endotérmicas

- (4, 5) Reação entre o metano e oxigênio
- (1) Reação entre metano e vapor d'água
- (6) Reação entre metano e CO2

Maior eficiência energética

Maior controle reacional

$$CH_4 + 1/2xO_2 + yCO_2 + (1-x-y)H_2O \leftrightarrow (y+1)CO + (3-x-y)H_2$$

Reações	Características	Nº
CH ₄ + H ₂ O ← CO + 3H ₂	ΔH°298K = 206 KJ.mol ⁻¹ ΔG°298K = 142 kJ.mol ⁻¹	(1)
CH ₄ + ½O2 → CO + 2H ₂	ΔH°298κ = -35,5 KJ.mol ⁻¹ ΔG°298:κ = -86,5 KJ.mol ⁻¹	(4)
CH ₄ + CO ₂	ΔH ^o _{298K} = 247,5 KJ.mol ⁻¹ ΔG ^o _{298K} = 170,78 KJ/mol ⁻¹	(6)
CH4 + 2O2 → CO2 + 2H2O	ΔH ^o _{298K} = -801,7 KJ.mol ⁻¹ ΔG ^o _{298K} = -801KJ.mol ⁻¹	(5)

ROTAS DO HIDROGÊNIO A PARTIR DA BIOMASSA

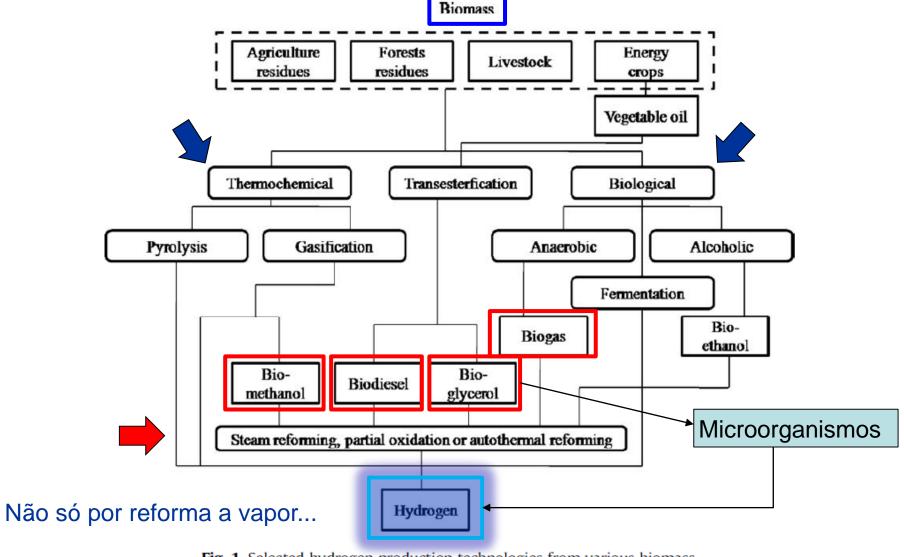


Fig. 1. Selected hydrogen production technologies from various biomass.

O que se entende por Bio-H₂ ?

H₂ obtido através da ação bioquímica (células, organismos vivos: bactérias, algas, etc)

Ex: via biofotólise (microalgas (fotossintetizantes))

 $2 H_2O + Energia (luz solar) \rightarrow 2 H_2 + O_2$

* Ação de enzimas hidrogenases

Limitações: substrato não residual (meio sintético); fotobioreator

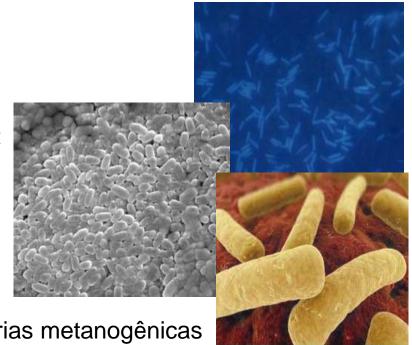
O que se entende por Bio-H₂ ?

Ex: via fotofermentação (microrganismos fotoheterotróficos)

Ácido acético:
$$C_2H_4O_2 + 2H_2O + Energia (solar) \rightarrow 4H_2 + 2CO_2$$

Ácido butírico: $C_4H_8O_2 + 6H_2O + Energia (solar) \rightarrow 10H_2 + 4CO_2$
Ácido málico $C_4H_6O_5 + 3H_2O + Energia (solar) \rightarrow 6H_2 + 4CO_2$

* Ação de enzimas hidrogenases e nitrogenases

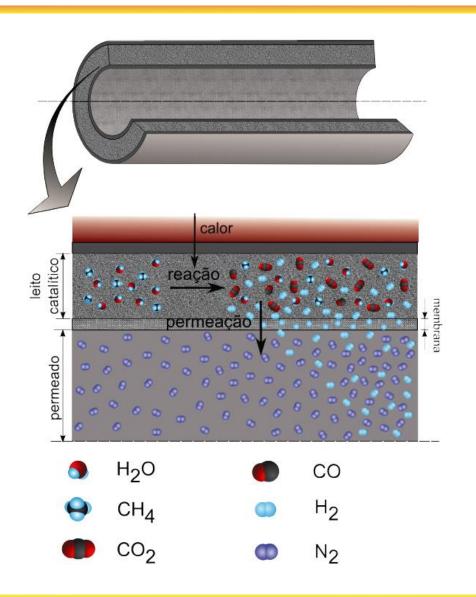

Limitações: alto consumo de energia por nitrogenases = ↓ rendimento; fotobioreator

O que se entende por Bio-H₂?

Ex: via fermentação anaeróbia (dark fermentation)

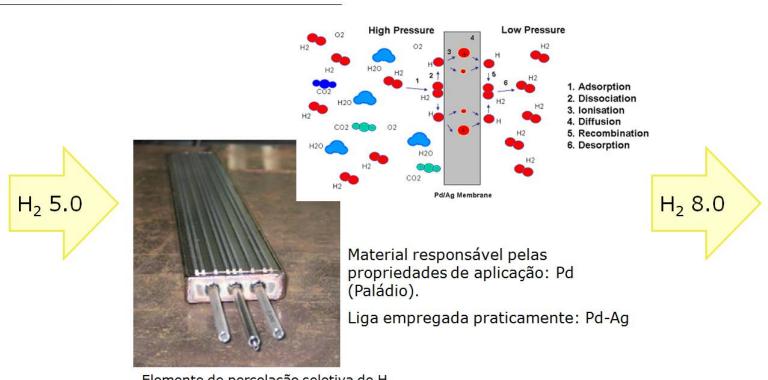
- Microrganismos que fermentam a matéria orgânica (biodigerstores);
- Matéria orgânica residual (fonte C);
- Não depende de luz;
- Ocorre em condições mesofílicas (similar às condições ambiente)

Acidogênese


Inibição de bactérias metanogênicas por: pH, temperatura, agente químico, etc.

PURIFICAÇÃO DO HIDROGÊNIO

MEMBRANA SELETIVA À HIDROGÊNIO



Leito catalítico envolvido por membrana densa de Paládio

PURIFICAÇÃO DO HIDROGÊNIO

H₂ Purificação: Membrana (Inorg.)

Elemento de percolação seletiva de H₂.

Cortesia: Tokyo Gas.

ELETRÓLISE PARA A PRODUÇÃO DE HIDROGÊNIO

ELETROLISADORES COMERCIAIS

Eletrolisador H2Nitidor Capacidade: 10 Nm³/h Cortesia: NUPHI/FPTI/ITAIPU

H₂ Produção: Eletrólise da Água

Eletrolisadores NEL (tecnologia Norsk Hydro BP)

Capacidade: ~500 Nm³/h

Cortesia: NEL Hydrogen.

Eletrolisadores IHT (tecnologia Lurgi, AP, e Bamag, BP)

Capacidade: ~700 Nm3/h

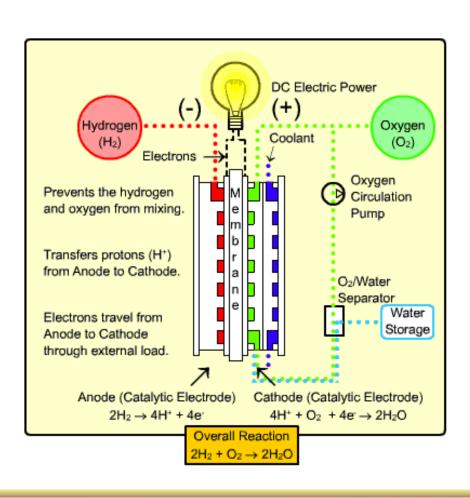
Cortesia: IHT.

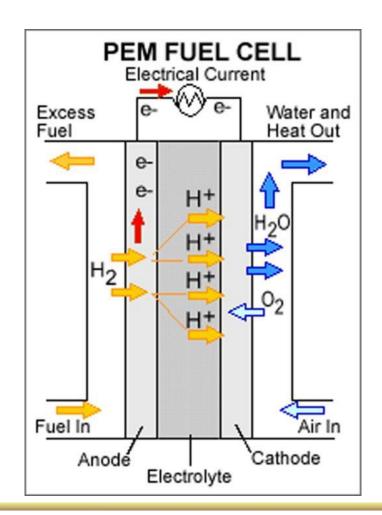
ELETROLISADORES COMERCIAIS

Tabela 4.1 Dados técnicos de alguns eletrolisadores comerciais

Fabricante	Electrolyser Co.	Norsk Hydro	De Nora Permelec	Teledyne Energy Systems	General Electric
Tipo	unipolar	bipolar	bipolar	bipolar	bipolar
Eletrólito	30%KOH	25% KOH	29% KOH	25% KOH	Nafion
Pressão	atm	atm	atm	4,1-8,9 bar	4 bar
Temperatura	70°C	75-80°C	75°C	82°C	80°C
Densidade de corrente (A/m²)	2.500	1.750	2.000	3.000	13.000
Tensão (V)	1,85	1,75	1,9		=
Consumo de energia (kWh/m³)	4,4	4,1	4,7	6,4*	- 3
Consumo de água (Um³)	1,0	0,9	0,85	-	-
Grau de pureza do H ₂	99,9%	99,5%	99,8%	99,9993%	>99%

^{*} Parte da energia é consumida na pressurização.




USO DE HIDROGÊNIO EM CÉLULAS A COMBUSTÍVEL

Energia química

----> Energia elétrica

(corrente contínua e baixa tensão)

PEM - MEMBRANA TROCADORA DE PRÓTONS

Mecanismos de funcionamento da PEM

Reações químicas parciais e global

Ânodo: $2H_2 + 4H_2O \rightarrow 4H_3O^+ + 4e^-$

Cátodo: $O_2 + 4H_3O^+ + 4e^- \rightarrow 6H_2O$

Global: $2H_2 + O_2 + 4H_2O \rightarrow 6H_2O$

Tecnologias

Se diferenciam de acordo com:

- Eletrólito
- Temperatura de Operação
- Reforma Interna ou Externa
- Sensibilidade ao CO, H₂S
- Tempo de partida
- Eficiência

- Dimensão
- Aplicação
- Catalisadores
- Potencial de Cogeração
- Maturidade Tecnológica

Principais Tecnologias

- AFC Alkaline Fuel Cell
- PEMFC Proton Exchange Fuel Cell
- MCFC Molten Carbonate Fuel Cell
- SOFC Solide Oxide Fuel Cell
- PAFC Phosphoric Acid Fuel Cell
- DMFC Direct Methanol Fuel Cell

Tecnologias

PEMFC– Membrana Polimérica de Troca de Prótons, 30-64% eficiência

Baixa Temperatura – 60°C a 100°C

Aplicações - Portátil, Mobilidade, Estacionária, VANTs

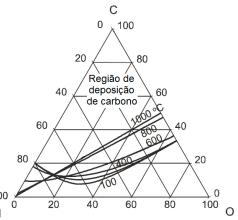
Eletrólito – polímero

Potência - mW a 1MW

Reforma externa do hidrogênio

Sensibilidade à contaminação por - CO, H₂S, Halogênios,

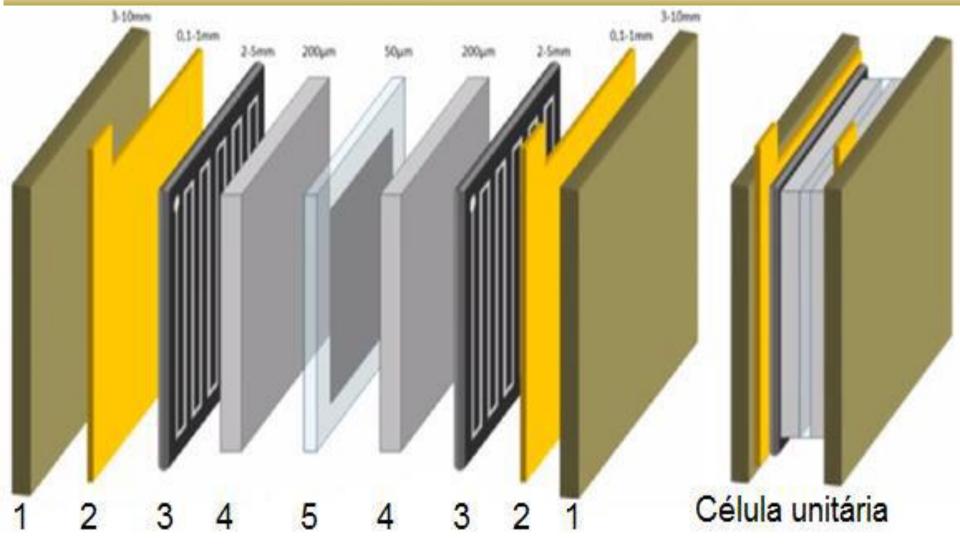
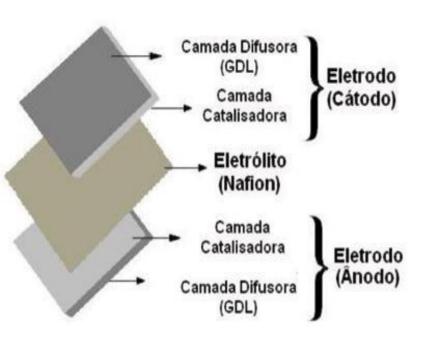
Siloxanos, etc

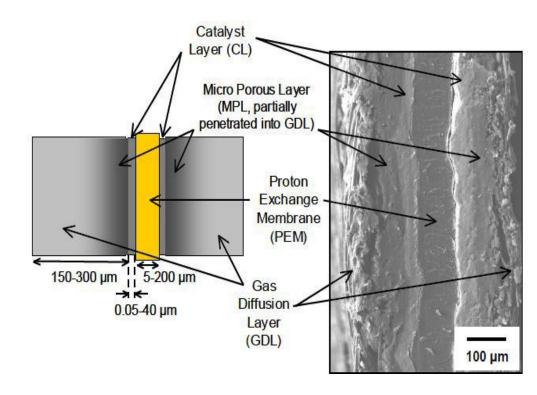

Células a Combustível Tecnologias

SOFC— CaC de Óxido Sólido, 55 a 65% eficiência

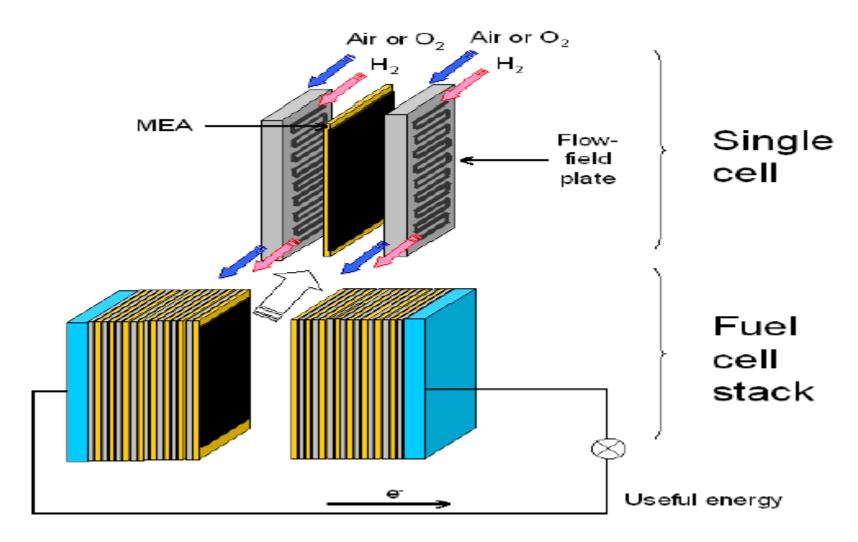
- Alta Temperatura 600°C a 1000°C
- Aplicações Estacionária
- Eletrólito Cerâmico CO₃²⁻
- Potência 10kW a 200kW
- Reforma interna para produção de H₂
- Sensibilidade à contaminação por H₂S, Halogênios,
 Siloxanos

CÉLULAS A COMBUSTÍVEL — MEA/PEM

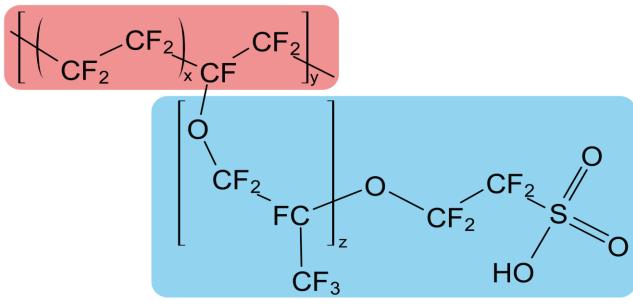

Figura esquemática de uma célula unitária. 1- placas compressoras; 2- coletores de corrente; 3- placas bipolares; 4- placas difusoras de gás e 5- MEA.

MEA - MEMBRANE ELECTRODE ASSEMBLY


Componentes de um MEA.

Fases do eletrodo de difusão gasosa.

CÉLULAS A COMBUSTÍVEL



Esquema de uma célula unitária e um stack de PEMFC

NAFION®

Estrutura química do Nafion®.

- Elevada Condutividade Protônica;
- Resistência mecânica e térmica;
- Insolubilidade à água.

- Custo elevado;
- Perda de propriedades hidrofílicas

Toyota Mirai Fuel Cell

Gerencia a célula a combustível

e a bateria

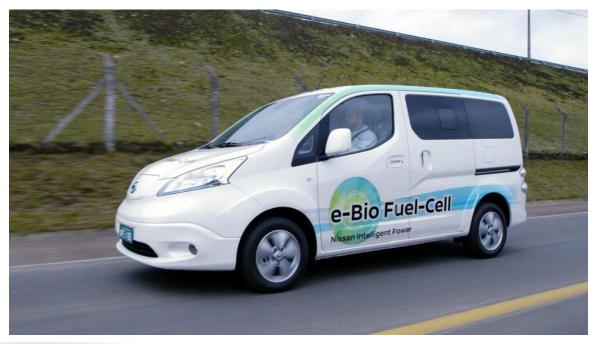
Motor elétrico

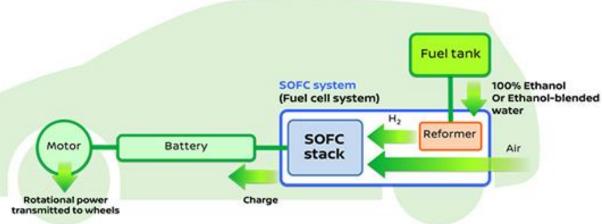
Eletricidade fornecida pela célula a combustível e bateria 113kW

Stack – célula a combustível

Converte o hidrogênio em eletricidade

Potência Máx: 114kW


Tanque de hidrogênio


Armazenamento do combustível em alta pressão Autonomia de 700km

Nissan SOFC/Etanol

SOFC: Solid Oxide Fuel Cell

Aplicações Estacionárias no Japão

200 mil residências com células a combustível até 2016

☐ Sucesso alcançado a partir de programa de um governo que subsidiou a aquisição das células pelos consumidores residenciais. Como consequência, possibilitou a produção em escala de componentes específicos para células a combustível e a redução dos custos desde 2009, bem como 0 avanço tecnológico.

Aplicações Estacionárias no Japão

200 mil residências com células a combustível

□ Os sistemas de células a combustível residenciais tem potência elétrica entre 250 watts e 750 watts.

☐ Células a combustível instaladas: PEMFC e SOFC.

Principais desafios da célula a combustível

Alto custo da tecnologia da célula a combustível

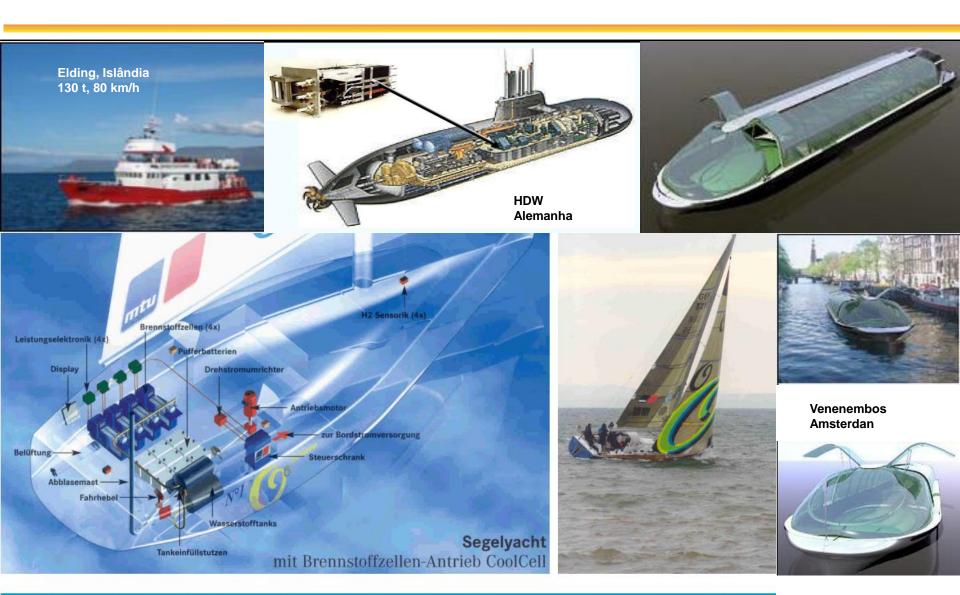
✓ Stacks das células a combustível usam metais caros, e os baixos volumes de produção impedem os ganhos de economia de escala

Desenvolvimento de componentes da célula de custo mais baixo e comercialmente viáveis

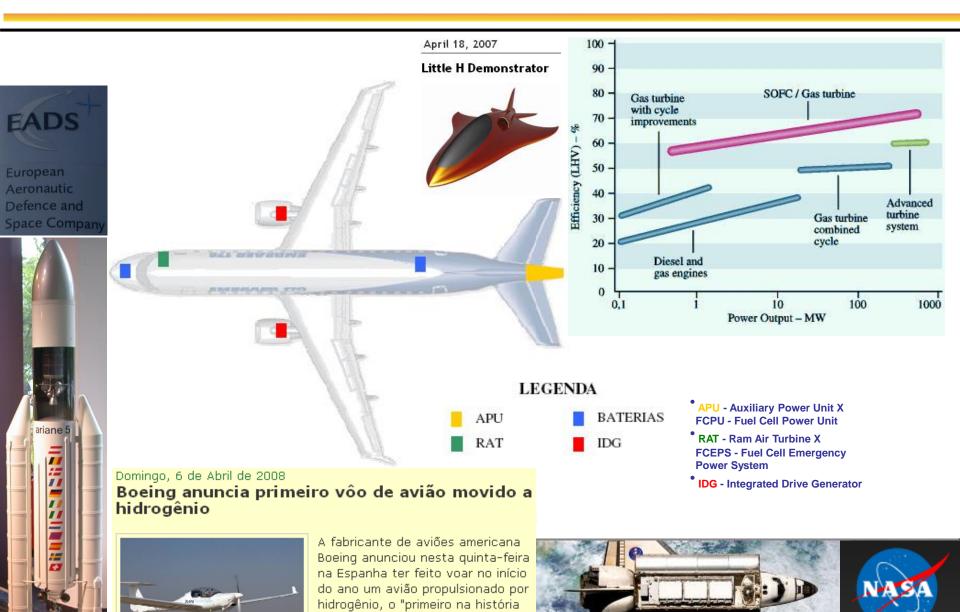
Aplicações Estacionárias

USO VEICULAR DO HIDROGÊNIO

USO VEICULAR - CaCs



Exemplos de uso do H2



OUTROS USOS DO HIDROGÊNIO - NAVAL

Veleiro de 12 metros "No 1" com sistema CoolCell de propulsão desenvolvido MTU já em navegação no Bodensee na Alemanha.

OUTROS USOS DO HIDROGÊNIO - AERONÁUTICO

da aviação".