
Fundamentos de Ecotoxicologia

Princípios e Aplicações

Fernando G. de Oliveira Lucíola T. Baldan

Universidade Federal do Paraná. Sistemas de Bibliotecas. Biblioteca UFPR Palotina.

O48 Oliveira, Fernando G. de.

Fundamentos de Ecotoxicologia: princípios e aplicações / Fernando G. de Oliveira, Lucíola T. Baldan.

- Palotina: UFPR, 2022.

19 p.: il., color.; [recurso eletrônico].

Inclui referências ISBN 978-65-84565-92-0 (PDF)

1. Biomonitoramento. 2. Contaminantes. 3. Dinâmica ambiental. 4. Ecotoxicologia. I. Baldan, Lucíola T. II. Título.

CDU: 573

Bibliotecária: Aparecida Pereira dos Santos CRB9/1653

Prefácio

A ecotoxicologia é uma subárea da ecologia, que tem como objetivo investigar os efeitos nocivos de diferentes contaminantes sobre os ecossistemas, servindo como uma ferramenta para o diagnóstico de impactos ambientes.

Diante de sua importância este documento tem como objetivo apresentar os conceitos fundamentais e suas principais aplicações de maneira clara e objetiva, além de despertar o interesse de alunos do ensino médio, alunos de graduação e pós-graduação para esta importante disciplina das ciências ambientais.

Os Autores

Sumário

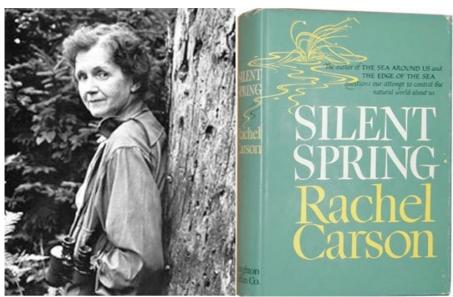
1. Ecotoxicologia	05
2. Contaminantes	06
3. Dinâmica Ambiental	07
4. Toxicocinética e toxicodinâmica	10
5. Bioindicadores e biomonitores	12
6. Biomarcadores	13
7. Bioensaio	14
8. Biomonitoramento	16
9. Estudos de Caso	18
IO. Guia para o delineamento experimental	20
11 Referências	21

1. Ecotoxicologia

A **toxicologia** é uma ciência multidisciplinar que tem como objeto de estudo os efeitos adversos das substâncias químicas sobre os organismos. Possui várias áreas, entre elas a clínica, ocupacional, ecotoxicológica, veterinária, forense, entre outras.

Philippus Aureolus Theophrastus Bombastus von Hohenheim (1493 - 1541), conhecido como Paracelso, foi um médico e teólogo suíço, hoje reconhecido como "pai da toxicologia". Em uma de suas obras, afirmou:

Apenas a dose faz o veneno: "Sola dosis facit venenum".


Em 1969, o termo *Ecotoxicologia* seria introduzido pelo toxicologista francês René Truhaut, que o definiu como:

"O ramo da toxicologia preocupado com o estudo dos efeitos tóxicos causados por poluentes naturais ou sintéticos aos constituintes dos ecossistemas animais (incluindo humanos), vegetais e microbianos, em um contexto integral".

René Truhaut

Essa visão sistêmica para os estudos toxicológicos já havia sido introduzida de maneira brilhante em 1962, no livro *Primavera Silenciosa*, de Rachel Carson, que apresentava os efeitos nocivos de pesticidas sobre os ecossistemas.

Rachel Carson.

Primavera Silenciosa 1ª Ed. (1962).

2. Contaminantes

Contaminantes são agentes **biológicos**, **químicos** ou **físicos** capazes de produzirem uma alteração na resposta biológica do organismo, sendo classificados de acordo com suas características.

CLASSES	EXEMPLOS
Compostos Inorgânicos	Íons metálicos (Cd, Hg, Ag, Br, Ni) Ânions (NO-3, CN-, S-2)
Compostos Orgânicos	Hidrocarbonetos policíclicos aromáticos (HPAs) Bifenilos policlorados (PCBs) Inseticidas Organoclorados e Organofosforados Inseticidas Carbamatos Inseticidas Piretróides Herbicidas
Radionuclídeos	U-238, Th-234, Ra-226
Contaminantes Emergentes	Fármacos (Esteroides, antibióticos, anti- inflamatórios, anticoncepcionais, antipsicóticos) Cianotoxinas Produtos de beleza Nanopartículas Conservantes

Fonte: O autor (2022).

3. Dinâmica ambiental

Esses contaminantes têm a sua origem nas mais diversas atividades humanas, tais como: mineração; indústria; agricultura; urbanização; geração de energia; entre outras.

Uma vez que são lançados no ambiente, esses contaminantes podem atingir solos, lençol freático, rios, lagos, lagoas, atmosfera e oceanos, por meio dos segmentos do ciclo hidrológico (**precipitação, evaporação, escoamento superficial, percolação e lixiviação**), comprometendo a saúde dos ecossistemas.

Contaminante

Figura: Possível distribuição de um contaminante através do ciclo da água.

Com o passar do tempo **(T)**, a concentração [] do contaminante crescerá progressivamente nos níveis tróficos, tornando-se maior nos predadores de topo. Esse fenômeno é chamado de **biomagnificação**.

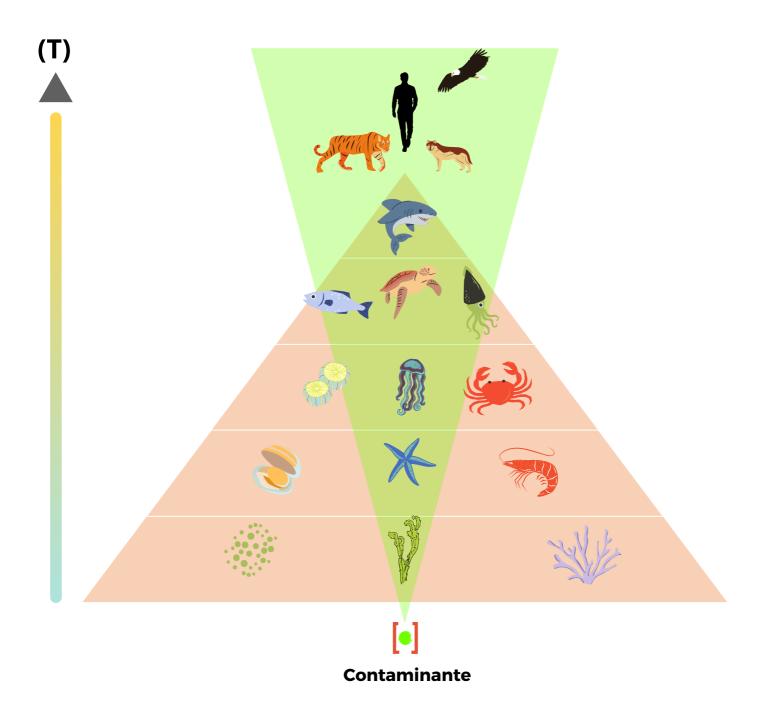


Figura: Concentração de um contaminante ao longo de uma cadeia trófica.

4. Toxicocinética e Toxicodinâmica

A **toxicidade** de um composto dependerá de sua **toxicocinética** (absorção, distribuição, metabolização e excreção) e de sua **toxicodinâmica** (ação do agente químico no órgão-alvo).

Uma vez absorvido pelo organismo, o contaminante passará pelo processo de **biotransformação**, sendo o produto (**metabólito**) excretado para o meio. Caso a excreção não seja possível, o contaminante será **bioacumulado** em algum órgão ou tecido específico, dependendo do tipo de contaminante.

A resposta "dano" ao organismo dependerá da convergência de fatores, tais como: o tipo de contaminante (orgânico, inorgânico, radionuclídeos), tempo de exposição (segundos, minutos, horas, dias, meses...), via de exposição (respiratória, cutânea, gástrica), dose (concentração), a biologia do organismo (mamíferos, anfíbios, répteis, artrópodes...) e o meio (terrestre, aquático, aéreo) ao qual está inserido.

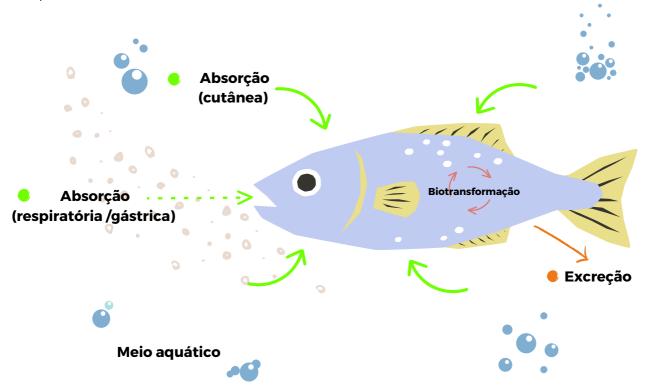


Figura: Dinâmica de processamento de um contaminante em um organismo aquático.

A extensão do dano (do indivíduo até o ecossistema) dependerá principalmente do tempo de exposição de um ou mais indivíduos.

RESPOSTAS À CONTAMINAÇÃO NOS DIFERENTES NÍVEIS DE ORGANIZAÇÃO BIOLÓGICA

TEMPO DE EXPOSIÇÃO	NÍVEL	DANO
> 2 anos	Ecossistema	Alteração na estrutura do ecossistema.
0,5 - 1 ano	População	Alterações da dinâmica e estrutura populacional.
1 - 2 meses	Organismo	Mudanças no crescimento e adaptação.
20 - 120 dias	Fisiológico	Mudanças no crescimento, reprodução e defesas imunológicas.
1 - 3 dias	Celular / Molecular	Patogenicidade celular, quebra de DNA, formação de micronúcleos e anormalidades cromossomais.
10 min	Molecular	lmunossupressão, potencial genotóxico, toxicidade.

Fonte: Adaptado de Hansen (2003).

5. Bioindicadores e Biomonitores

Os **bioindicadores** são organismos com maior sensibilidade de resposta à exposição por **curtos** períodos de tempo a um ou mais compostos, enquanto os **biomonitores** são organismos menos sensíveis, acumulando em seus tecidos os compostos aos quais estão expostos por **longos** períodos de tempo no ambiente.

As respostas de ambos podem incluir mudanças morfológicas, celulares, histológicas, bioquímicas, metabólicas, comportamentais, e até na estrutura da população.

Dentre os diversos bioindicadores/biomonitores estão:

- Microorganismos (fungos, fitoplâncton, liquens e bactérias);
- Plantas (macrófitas, briófitas e pteridófitas);
- Invertebrados (crustáceos, moluscos, equinodermos, bivalves, oligoquetas, nematoides, artrópodes);
- Vertebrados (peixes, anfíbios, répteis, aves e mamíferos).

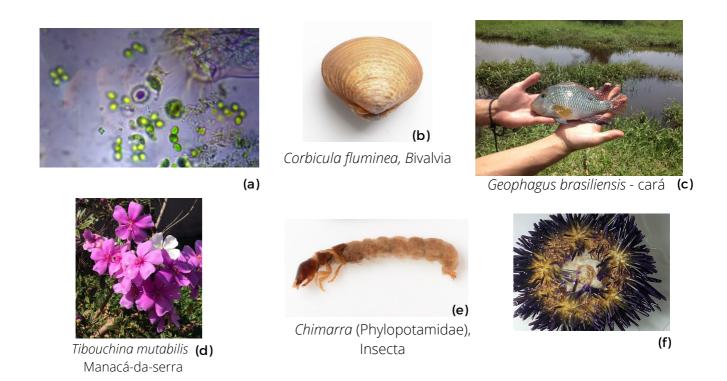
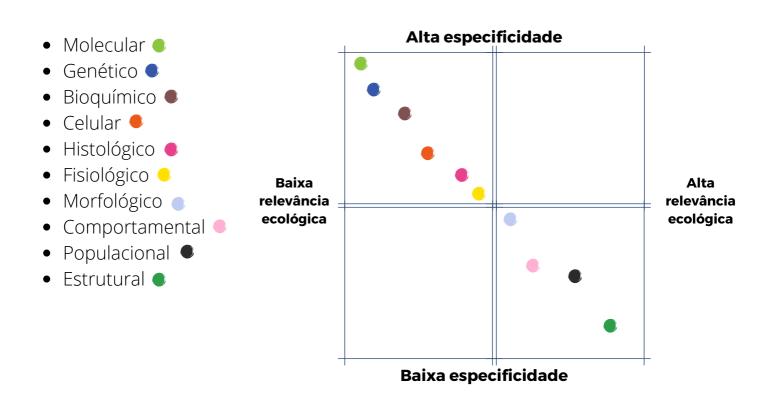



Figura: Exemplos de organismos utilizados em ecotoxicologia: (a) algas; (b) bivalves; (c) peixe; (d) angiosperma,; (e) macroinvertebrado; (e) Echinodermata.

Fonte: Baldan, Oliveira (2022).

6. Biomarcadores

Os **biomarcadores** podem ser definidos como alterações biológicas mensuráveis que podem ser relacionados à exposição do organismo aos agentes estressores. Essas alterações podem ser observadas nos seguintes níveis:

Os biomarcadores podem ser classificados como sendo de **efeito** ou de **exposição.** Os biomarcadores de efeito refletem **alterações biológicas** ainda em um estágio reversível (ou precoce), sendo geralmente alterações bioquímicas ou fisiológicas, pois precedem danos estruturais, enquanto os biomarcadores de exposição refletem a **distribuição do contaminante** através do organismo.

7. Bioensaio

O **bioensaio** é um experimento laboratorial que visa a determinação da **toxicidade** e dos **limites permissíveis** de diferentes contaminantes no ambiente.

São classificados como de **exposição aguda** (não superior a 24h) ou **exposição crônica** (superior a 24h).

Podem ser utilizados organismos de diferentes níveis tróficos, frente a diferentes tipos de contaminantes.

Os principais requisitos são: **reprodutividade**, **padronização** e **repetitividade**.

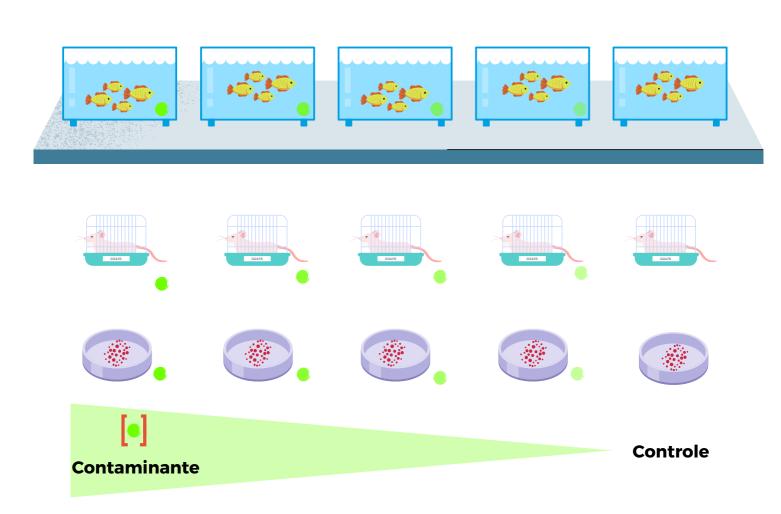


Figura: Exemplo de delineamento experimental. Exemplos: peixes, ratos e bactérias demonstrando que são testadas diferentes dosagens e o controle (dosagem zero).

A relação **dose/concentração - resposta** refere-se aos processos de caracterização da **relação** entre **dose** de um contaminante e a magnitude de determinado **efeito adverso** à saúde do indivíduo exposto a ele.

Frequentemente são utilizadas **curvas dose/concentração - resposta** para a determinação das doses/concentrações letais **(DL99 / CL99)**, necessárias para provocar a mortalidade de 99% dos animais expostos. As doses/concentrações subletais **(DL50 / CL50)** são definidas como concentrações que levam à mortalidade de 50% da população ou que provocam um ou mais tipos de alterações biológicas aos animais expostos.

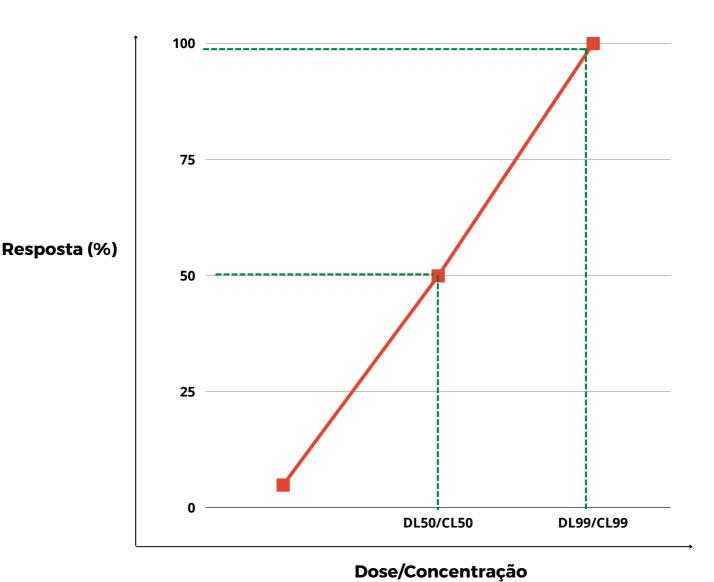


Figura: Curva dose/concentração - resposta

8. Biomonitoramento

O biomonitoramento trata-se de uma avaliação *in situ* (no local) que visa determinar em uma escala **temporal** e **espacial** os efeitos de contaminantes sobre o ecossistema, servindo como uma importante **ferramenta** para averiguar a qualidade e a saúde ambiental, sendo classificado como biomonitoramento **ativo** ou **passivo**.

No biomonitoramento **ativo** é realizada a **exposição intencional** de um ou mais organismos em locais selecionados no ambiente.

Figura: Exposição intencional de organismos aquáticos.

Figura: Exposição intencional de organismos terrestres.

No biomonitoramento **passivo** é realizada a **coleta de amostras** de um ou mais organismos presentes no ambiente, por meio dos mais diversos métodos

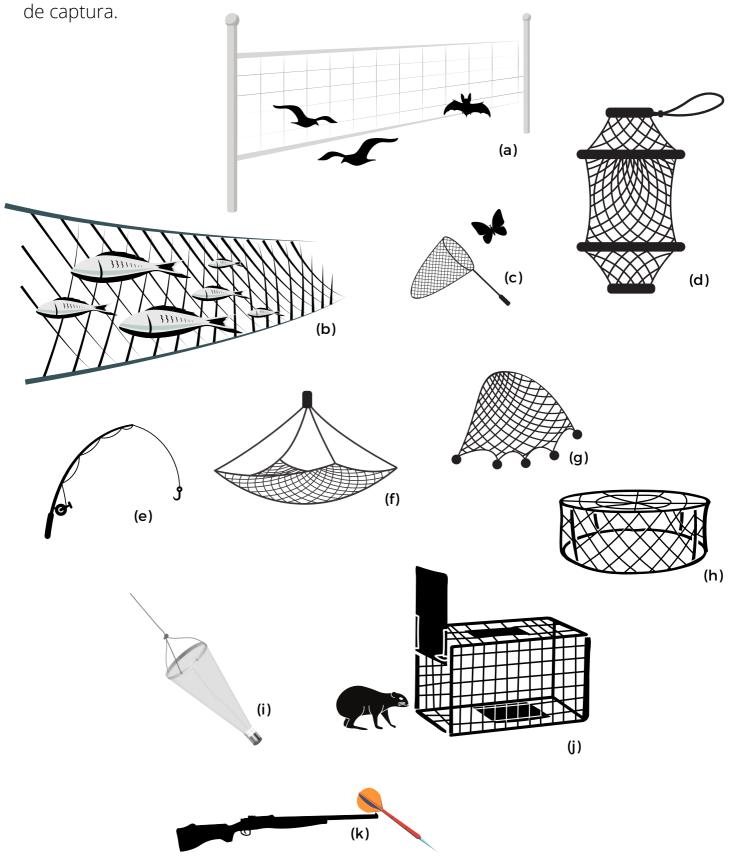


Figura: Instrumentos de captura. a) rede de neblina; b) rede de espera; c) rede entomológica; d) puça; e) vara de pesca; f) rede de arrasto; g) tarrafa; h) covo; i) rede de plâncton; j) pitfall; k) lançador pneumático de dardos para sedação.

9. Estudos de Casos

Minamata (Japão)

Entre 1953 e 1956 passaram a ser observados estranhos comportamentos -"tremores" - em gatos de rua na cidade de Minamata, localizada na costa japonesa. Pouco tempo depois, os mesmos tremores começaram a ser observados em moradores da cidade, o que levou a uma investigação por parte das autoridades sanitárias japonesas. Após uma longa e minuciosa investigação epidemiológica ficou evidenciado que peixes, gatos e pessoas haviam sido quantidades de contaminados elevadas mercúrio, por substância extremamente tóxica que havia sido lançada indiscriminadamente na baía de Minamata nas décadas anteriores por uma indústria local. O caso é reconhecido como um dos primeiros a despertar a atenção de autoridades e cientistas para a questão da contaminação do ambiente, e de como esses agentes transitam entre diferentes níveis tróficos, podendo afetar a saúde humana.

No dia 26 de abril de 1986, na cidade de Pripiat - Ucrânia, ocorreu a explosão do reator da usina nuclear de Chernobil, liberando grandes quantidades de combustível nuclear, como **Césio 137**, **Césio 134** e **Iodo 131**, diretamente na atmosfera, que, posteriormente, carregado pelos ventos, acabou se depositando em uma área de aproximadamente 23.000 km², afetando animais e vegetais, tanto terrestres quanto aquáticos. O desastre de Chernobil permanece como o maior incidente nuclear da história, sendo o número exato de vítimas humanas desconhecido.

XX

Goiânia (Brasil)

Em 1987, dois catadores de papel encontraram um equipamento de radioterapia abandonado em um prédio em ruínas na cidade de Goiânia (GO). Com o intuito de venderem as partes da máquina como ferro-velho, ambos removeram de maneira inadvertida a fonte de **Césio-137** em seu interior. O elemento radioativo acabou por vitimar quatro pessoas, além de contaminar inúmeras outras. O caso permanece como o maior incidente radioativo ocorrido no Brasil.

Caruaru (Brasil)

Em 1996, na cidade de Caruaru (PE), aproximadamente 60 pacientes com insuficiência renal morreram durante o procedimento de hemodiálise, devido à intoxicação por **cianotoxinas** (toxinas produzidas por cianobactérias). As toxinas estavam presentes na água advinda do reservatório responsável pelo abastecimento público da cidade, que não contava com dispositivos para a remoção de tais substâncias. O caso fez com que o monitoramento de cianotoxinas se tornasse obrigatório em reservatórios de abastecimento.

Mariana (Brasil)

Em novembro de 2015 ocorreu o maior desastre ambiental brasileiro, na cidade de Mariana (MG), com o rompimento da barragem de contenção de rejeitos do Fundão, contaminando o solo e a água de uma extensa área da Bacia do Rio Doce com metais pesados, como **Chumbo**, **Arsênio**, **Níquel**, **Cobre**, **Alumínio** e **Manganês**.

10. Guia Para o Delineamento Experimental

Para a realização de um estudo ecotoxicológico alguns fatores devem ser previamente avaliados para que o estudo seja bem-sucedido. Devem ser considerados:

Contaminante

- Deve ter sua toxicocinética e toxicodinâmica conhecidas;
- Mensurável nas matrizes ambientais.

Local de Amostragem

- Deve ser realizada antes, depois e ao longo do local contaminado (para fins de comparação);
- De fácil acesso.

Biomonitor/Bioindicador

- A(s) espécie(s) deve(m) ser representativa(s) na área de estudo;
- Preferencialmente de diferentes níveis tróficos;
- O organismo deve ser de fácil identificação e coleta;
- Tamanho adequado para coleta de material;
- Hábito sedentário ou de baixa mobilidade.

Biomarcadores

• Devem ser escolhidos de acordo com a toxicocinética e toxicodinâmica do contaminante.

Bioensaio

• Deve ser realizado para a avaliação de dose/concentração-resposta.

Biomonitoramento

• Deve ser realizado para fins de monitoramento e avaliação de impacto ambiental.

11. Referências

AZEVEDO, F. A.; CHASIN, A. A. M. (Cord.). **As Bases Toxicológicas da Ecotoxicologia**. São Carlos - RiMa, 2003. São Paulo - Intertox, 2003.

BLASCO, J.; CHAPMAN, P. M.; CAMPANA, O.; HAMPEL, M. (Ed.). **Marine Ecotoxicology: Current Knowledge and Future Issues.** Elsevier Inc., 2016.

BRAUNBECK, T.; HINTON, D. E.; STREIT, B. (Ed.). **Fish ecotoxicology.** Springer Basel, 1998.

HANSEN, P. D. Chapter 6 – **Biomarkers. Bioindicators & Biomonitors — Principles, Concepts and Applications**, v.06. p. 204, 2003.

LAUREAU, C. C.; CAGNON, C.; LAUGA, B.; DURAN, R. (Ed.). **Microbial Ecotoxicology.** Springer International Publishing, 2017.

NEWMAN, M. C. **Fundamentals of Ecotoxicology: The Science of Pollution.** Fourth Edition, Boca Raton: Taylor & Francis, CRC Press, 2015.

OGA, S.; CAMARGO, M. M. A.; BATISTUZZO, J. A. O. **Fundamentos de Toxicologia**. ed.4°, Atheneu, Rio de Janeiro, 2014.

OKUNO, E. **Radiação: efeitos, riscos e benefícios.** São Paulo - Oficina de Textos, 2018.

SPARLING, D. W. **Basics of Ecotoxicology.** Boca Raton : Taylor & Francis, CRC Press, 2017.

TRIQUET, C. A.; AMIARD, J. C.; RAINBOW, P. S. (Ed.). **Ecological Biomarkers: Indicators of Ecotoxicological Effects.** Boca Raton : Taylor & Francis, CRC Press, 2013.

WALKER, C. H.; SIBLY, R. M.; HOPKIN, S. P.; PEAKALL, D. B. **Principles of Ecotoxicology.** Fourth Edition, Boca Raton : Taylor & Francis, CRC Press, 2012.